A remark on Dunford-Pettis property in
Author:
Raffaella Cilia
Journal:
Proc. Amer. Math. Soc. 120 (1994), 183-184
MSC:
Primary 46E40; Secondary 46B20, 46M05
DOI:
https://doi.org/10.1090/S0002-9939-1994-1176480-0
MathSciNet review:
1176480
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that if is an
space, then
has the Dunford-Pettis Property.
- [1] Kevin T. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), no. 1, 35–41. MR 531148, https://doi.org/10.1007/BF01406706
- [2] Jean Bourgain, New classes of \cal𝐿^{𝑝}-spaces, Lecture Notes in Mathematics, vol. 889, Springer-Verlag, Berlin-New York, 1981. MR 639014
- [3] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [4] J. Diestel, Notes on the resume of Grothendieck, preprint, 1988.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46B20, 46M05
Retrieve articles in all journals with MSC: 46E40, 46B20, 46M05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1176480-0
Keywords:
Dunford-Pettis property,
Bochner integrable functions,
space
Article copyright:
© Copyright 1994
American Mathematical Society