Auréole of a quasi-ordinary singularity
Author:
Chunsheng Ban
Journal:
Proc. Amer. Math. Soc. 120 (1994), 393-404
MSC:
Primary 32S25; Secondary 32S50
DOI:
https://doi.org/10.1090/S0002-9939-1994-1186128-7
MathSciNet review:
1186128
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The auréole of an analytic germ $(X,x) \subset ({\mathbb {C}^n},0)$ is a finite family of subcones of the reduced tangent cone $|{C_{X,x}}|$ such that the set ${D_{X,x}}$ of the limits of tangent hyperplanes to $X$ at $x$ is equal to $\cup {(\operatorname {Proj} {C_\alpha })^ \vee }$. The auréole for a case of quasi-ordinary singularity is computed.
-
C. Ban, Whitney stratification, equisingular family and the auréole of quasi-ordinary singularity, Ph.D. thesis, Purdue University, 1990.
J. Lipman, Quasi-ordinary singularities of embedded surfaces, Ph.D. thesis, Harvard University, 1965.
- Joseph Lipman, Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 1–107. MR 954947, DOI https://doi.org/10.1090/memo/0388
- Lê Dũng Tráng and Bernard Teissier, Limites d’espaces tangents en géométrie analytique, Comment. Math. Helv. 63 (1988), no. 4, 540–578 (French). MR 966949, DOI https://doi.org/10.1007/BF02566778
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32S25, 32S50
Retrieve articles in all journals with MSC: 32S25, 32S50
Additional Information
Keywords:
Quasi-ordinary singularity,
auréole
Article copyright:
© Copyright 1994
American Mathematical Society