## Central extensions of nonsymmetrizable Kac-Moody algebras over commutative algebras

HTML articles powered by AMS MathViewer

- by Yun Gao PDF
- Proc. Amer. Math. Soc.
**121**(1994), 67-76 Request permission

## Abstract:

For a commutative algebra*R*over a field

*k*of characteristic zero and a nonsymmetrizable Kac-Moody algebra $g(A)$, we prove that the Lie algebra ${g_R}(A) = R{ \otimes _k}g(A)$ is centrally closed. Consequently, we get a characterization of the symmetrizability of $g(A)$ by the second homology group of the Kac-Moody algebra over Laurent polynomials. Also a presentation of ${g_R}(A)$ is given when

*A*is of nonaffine type.

## References

- G. M. Benkart and R. V. Moody,
*Derivations, central extensions, and affine Lie algebras*, Algebras Groups Geom.**3**(1986), no. 4, 456–492. MR**901810** - S. Berman,
*Isomorphisms and automorphisms of universal Heffalump Lie algebras*, Proc. Amer. Math. Soc.**65**(1977), no. 1, 29–34. MR**486024**, DOI 10.1090/S0002-9939-1977-0486024-4 - S. Berman and R. V. Moody,
*Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy*, Invent. Math.**108**(1992), no. 2, 323–347. MR**1161095**, DOI 10.1007/BF02100608 - Howard Garland,
*The arithmetic theory of loop groups*, Inst. Hautes Études Sci. Publ. Math.**52**(1980), 5–136. MR**601519** - Aziz Haddi,
*Détermination des extensions centrales des algèbres de Kac-Moody*, C. R. Acad. Sci. Paris Sér. I Math.**306**(1988), no. 16, 691–694 (French, with English summary). MR**944412** - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Christian Kassel,
*Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra*, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 265–275. MR**772062**, DOI 10.1016/0022-4049(84)90040-9 - Robert V. Moody and Arturo Pianzola,
*Lie algebras with triangular decompositions*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR**1323858** - Robert V. Moody, Senapathi Eswara Rao, and Takeo Yokonuma,
*Toroidal Lie algebras and vertex representations*, Geom. Dedicata**35**(1990), no. 1-3, 283–307. MR**1066569**, DOI 10.1007/BF00147350 - Robert Lee Wilson,
*Euclidean Lie algebras are universal central extensions*, Lie algebras and related topics (New Brunswick, N.J., 1981) Lecture Notes in Math., vol. 933, Springer, Berlin-New York, 1982, pp. 210–213. MR**675118**

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 67-76 - MSC: Primary 17B67; Secondary 17B65
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185261-3
- MathSciNet review: 1185261