Strong incompactness for some nonperfect rings
HTML articles powered by AMS MathViewer
- by Jan Trlifaj
- Proc. Amer. Math. Soc. 123 (1995), 21-25
- DOI: https://doi.org/10.1090/S0002-9939-1995-1212288-6
- PDF | Request permission
Abstract:
Answering a question of Eklof and Mekler, for each regular uncountable cardinal $\kappa$, we construct a non-left-perfect ring ${R_\kappa }$ and a non-projective strongly $\kappa$-free left ideal ${I_\kappa }$ such that ${\text {gen}}({I_\kappa }) = \kappa$. Moreover, if $\kappa > {\aleph _1}$, then ${I_\kappa }$ is not $\kappa$-free. As consequences, we obtain results concerning incompactness spectra of non-perfect rings.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223, DOI 10.1007/978-1-4684-9913-1
- Paul C. Eklof and Alan H. Mekler, Almost free modules, North-Holland Mathematical Library, vol. 46, North-Holland Publishing Co., Amsterdam, 1990. Set-theoretic methods. MR 1055083
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 21-25
- MSC: Primary 16D40; Secondary 03E75, 16E50
- DOI: https://doi.org/10.1090/S0002-9939-1995-1212288-6
- MathSciNet review: 1212288