Best approximation in $L^ 1(I,X)$
HTML articles powered by AMS MathViewer
- by R. Khalil and F. Saidi
- Proc. Amer. Math. Soc. 123 (1995), 183-190
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223266-5
- PDF | Request permission
Abstract:
Let X be a Banach space and G a closed subspace of X. The subspace G is called proximinal in X if for every $x \in X$ there exists at least one $y \in G$ such that $\left \| {x - y} \right \| = d(x,G) = \inf \{ \left \| {x - z} \right \|:z \in G\}$. It is an open problem whether ${L^1}(I,G)$ is proximinal in ${L^1}(I,X)$ if G is proximinal in X, where I is the unit interval with the Lebesgue measure. In this paper, we prove the proximinality of ${L^1}(I,G)$ in ${L^1}(I,X)$ for a class of proximinal subspaces G in X.References
- R. Khalil and W. Deeb, Best approximation in $L^p(\mu ,X)$. II, J. Approx. Theory 59 (1989), no.ย 3, 296โ299. MR 1027958, DOI 10.1016/0021-9045(89)90094-4
- W. Deeb and R. Khalil, Best approximation in $L^p(I,X),\;0<p<1$, J. Approx. Theory 58 (1989), no.ย 1, 68โ77. MR 1000868, DOI 10.1016/0021-9045(89)90009-9
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- D. Hussein and R. Khalil, Best approximation in tensor product spaces, Soochow J. Math. 18 (1992), no.ย 4, 397โ407. MR 1195497
- Roshdi Khalil, Best approximation in $L^{p}(I,\,X)$, Math. Proc. Cambridge Philos. Soc. 94 (1983), no.ย 2, 277โ279. MR 715042, DOI 10.1017/S0305004100061120 R. Larson, Functional analysis, Marcel Dekker, New York, 1973.
- W. A. Light and E. W. Cheney, Some best-approximation theorems in tensor-product spaces, Math. Proc. Cambridge Philos. Soc. 89 (1981), no.ย 3, 385โ390. MR 602291, DOI 10.1017/S0305004100058278
- W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces, Lecture Notes in Mathematics, vol. 1169, Springer-Verlag, Berlin, 1985. MR 817984, DOI 10.1007/BFb0075391
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044, DOI 10.1007/978-3-662-41583-2
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 183-190
- MSC: Primary 41A65; Secondary 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1223266-5
- MathSciNet review: 1223266