Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform homeomorphisms between the unit balls in $L_ p$ and $l_ p$


Author: Gun-Marie Lövblom
Journal: Proc. Amer. Math. Soc. 123 (1995), 405-409
MSC: Primary 46B99; Secondary 46B25, 46E30
DOI: https://doi.org/10.1090/S0002-9939-1995-1227523-8
MathSciNet review: 1227523
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $T:B({L_p}) \to B({l_p}),1 \leq p < 2$, be a uniform homeomorphism with modulus of continuity ${\delta _T}$. It is shown that for any $\gamma ,0 \leq \gamma < \frac {{2 - p}}{{2p}}$, there exists $K > 0$ and a sequence $\{ {\varepsilon _n}\}$ with ${\varepsilon _n} \to 0$ such that $\delta _T^{ - 1}({\delta _T}({\varepsilon _n})) \geq K{\varepsilon _n}|\log {\varepsilon _n}{|^\gamma }$ for all ${\varepsilon _n}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B99, 46B25, 46E30

Retrieve articles in all journals with MSC: 46B99, 46B25, 46E30


Additional Information

Article copyright: © Copyright 1995 American Mathematical Society