Uniform homeomorphisms between the unit balls in $L_ p$ and $l_ p$
HTML articles powered by AMS MathViewer
- by Gun-Marie Lövblom
- Proc. Amer. Math. Soc. 123 (1995), 405-409
- DOI: https://doi.org/10.1090/S0002-9939-1995-1227523-8
- PDF | Request permission
Abstract:
Let $T:B({L_p}) \to B({l_p}),1 \leq p < 2$, be a uniform homeomorphism with modulus of continuity ${\delta _T}$. It is shown that for any $\gamma ,0 \leq \gamma < \frac {{2 - p}}{{2p}}$, there exists $K > 0$ and a sequence $\{ {\varepsilon _n}\}$ with ${\varepsilon _n} \to 0$ such that $\delta _T^{ - 1}({\delta _T}({\varepsilon _n})) \geq K{\varepsilon _n}|\log {\varepsilon _n}{|^\gamma }$ for all ${\varepsilon _n}$.References
- J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 157–167. MR 907692, DOI 10.1007/BFb0078143
- Per Enflo, On the nonexistence of uniform homeomorphisms between $L_{p}$-spaces, Ark. Mat. 8 (1969), 103–105. MR 271719, DOI 10.1007/BF02589549
- Yoav Benyamini, The uniform classification of Banach spaces, Texas functional analysis seminar 1984–1985 (Austin, Tex.), Longhorn Notes, Univ. Texas Press, Austin, TX, 1985, pp. 15–38. MR 832247
- Joram Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263–287. MR 167821
- Gun-Marie Lövblom, Uniform homeomorphisms between unit balls in $L_p$-spaces, Math. Scand. 62 (1988), no. 2, 294–302. MR 964229, DOI 10.7146/math.scand.a-12219 S. Mazur, Une remarque sur l’homéomorphie des champs fonctionnels, Studia Math. 1 (1929).
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 405-409
- MSC: Primary 46B99; Secondary 46B25, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1227523-8
- MathSciNet review: 1227523