## Upper bounds for the derivative of exponential sums

HTML articles powered by AMS MathViewer

- by Peter Borwein and Tamás Erdélyi PDF
- Proc. Amer. Math. Soc.
**123**(1995), 1481-1486 Request permission

## Abstract:

The equality \[ \sup \limits _p \frac {{|p’(a)|}}{{{{\left \| p \right \|}_{[a,b]}}}} = \frac {{2{n^2}}}{{b - a}}\] is shown, where the supremum is taken for all exponential sums*p*of the form \[ p(t) = {a_0} + \sum \limits _{j = 1}^n {{a_j}{e^{{\lambda _j}t}},\quad {a_j} \in {\mathbf {R}},} \] with nonnegative exponents ${\lambda _j}$. The inequalities \[ {\left \| {p’} \right \|_{[a + \delta ,b - \delta ]}} \leq 4{(n + 2)^3}{\delta ^{ - 1}}{\left \| p \right \|_{[a,b]}}\] and \[ {\left \| {p’} \right \|_{[a + \delta ,b - \delta ]}} \leq 4\sqrt 2 {(n + 2)^3}{\delta ^{ - 3/2}}{\left \| p \right \|_{{L_2}[a,b]}}\] are also proved for all exponential sums of the above form with arbitrary real exponents. These results improve inequalities of Lorentz and Schmidt and partially answer a question of Lorentz.

## References

- Samuel Karlin and William J. Studden,
*Tchebycheff systems: With applications in analysis and statistics*, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR**0204922** - G. G. Lorentz,
*Notes on approximation*, J. Approx. Theory**56**(1989), no. 3, 360–365. MR**990350**, DOI 10.1016/0021-9045(89)90125-1 - Eckard Schmidt,
*Zur Kompaktheit bei Exponentialsummen*, J. Approximation Theory**3**(1970), 445–454 (German). MR**271588**, DOI 10.1016/0021-9045(70)90045-6 - Philip W. Smith,
*An improvement theorem for Descartes systems*, Proc. Amer. Math. Soc.**70**(1978), no. 1, 26–30. MR**467118**, DOI 10.1090/S0002-9939-1978-0467118-7

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1481-1486 - MSC: Primary 41A17; Secondary 41A10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1232137-X
- MathSciNet review: 1232137