Upper bounds for the derivative of exponential sums
HTML articles powered by AMS MathViewer
- by Peter Borwein and Tamás Erdélyi
- Proc. Amer. Math. Soc. 123 (1995), 1481-1486
- DOI: https://doi.org/10.1090/S0002-9939-1995-1232137-X
- PDF | Request permission
Abstract:
The equality \[ \sup \limits _p \frac {{|p’(a)|}}{{{{\left \| p \right \|}_{[a,b]}}}} = \frac {{2{n^2}}}{{b - a}}\] is shown, where the supremum is taken for all exponential sums p of the form \[ p(t) = {a_0} + \sum \limits _{j = 1}^n {{a_j}{e^{{\lambda _j}t}},\quad {a_j} \in {\mathbf {R}},} \] with nonnegative exponents ${\lambda _j}$. The inequalities \[ {\left \| {p’} \right \|_{[a + \delta ,b - \delta ]}} \leq 4{(n + 2)^3}{\delta ^{ - 1}}{\left \| p \right \|_{[a,b]}}\] and \[ {\left \| {p’} \right \|_{[a + \delta ,b - \delta ]}} \leq 4\sqrt 2 {(n + 2)^3}{\delta ^{ - 3/2}}{\left \| p \right \|_{{L_2}[a,b]}}\] are also proved for all exponential sums of the above form with arbitrary real exponents. These results improve inequalities of Lorentz and Schmidt and partially answer a question of Lorentz.References
- Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
- G. G. Lorentz, Notes on approximation, J. Approx. Theory 56 (1989), no. 3, 360–365. MR 990350, DOI 10.1016/0021-9045(89)90125-1
- Eckard Schmidt, Zur Kompaktheit bei Exponentialsummen, J. Approximation Theory 3 (1970), 445–454 (German). MR 271588, DOI 10.1016/0021-9045(70)90045-6
- Philip W. Smith, An improvement theorem for Descartes systems, Proc. Amer. Math. Soc. 70 (1978), no. 1, 26–30. MR 467118, DOI 10.1090/S0002-9939-1978-0467118-7
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1481-1486
- MSC: Primary 41A17; Secondary 41A10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1232137-X
- MathSciNet review: 1232137