Oscillatory singular integrals on Hardy spaces associated with Herz spaces
HTML articles powered by AMS MathViewer
- by Shan Zhen Lu and Da Chun Yang
- Proc. Amer. Math. Soc. 123 (1995), 1695-1701
- DOI: https://doi.org/10.1090/S0002-9939-1995-1239800-5
- PDF | Request permission
Abstract:
In this paper, it is proved that the oscillatory singular integral operators of nonconvolution type are bounded from Hardy spaces associated with Herz spaces to Herz spaces.References
- Yong Zhuo Chen and Ka-Sing Lau, Some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), no. 2, 255–278. MR 1001460, DOI 10.1016/0022-1236(89)90097-9
- José García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), no. 3, 499–513. MR 1002462, DOI 10.1112/jlms/s2-39.3.499
- C. S. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968/69), 283–323. MR 0438109, DOI 10.1512/iumj.1969.18.18024
- Shan Zhen Lu and Da Chun Yang, The Littlewood-Paley function and $\phi$-transform characterizations of a new Hardy space $HK_2$ associated with the Herz space, Studia Math. 101 (1992), no. 3, 285–298. MR 1153785, DOI 10.4064/sm-101-3-285-298
- Yibiao Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), no. 1, 55–64. MR 1109480, DOI 10.4171/RMI/105
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- Fulvio Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. MR 890662, DOI 10.1016/0022-1236(87)90064-4
- Da Chun Yang, Real-variable characterizations of the Hardy spaces $HK_p(\mathbf R^n)$, Adv. in Math. (China) 24 (1995), no. 1, 63–73 (Chinese, with English and Chinese summaries). MR 1334605
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1695-1701
- MSC: Primary 42B20; Secondary 26D10, 42B30, 47G10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1239800-5
- MathSciNet review: 1239800