Unique integrability of continuous $k$-plane fields
HTML articles powered by AMS MathViewer
- by Patrick D. McSwiggen
- Proc. Amer. Math. Soc. 123 (1995), 1951-1954
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277128-8
- PDF | Request permission
Abstract:
It is shown that unique integrability of a continuous k-plane field is a generic property for plane field satisfying a "topological bracket condition".References
- Ralph Abraham, Jerrold E. Marsden, and Tudor S. Raţiu, Manifolds, tensor analysis, and applications, Global Analysis Pure and Applied: Series B, vol. 2, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR 697563 G. Choquet, Lectures on analysis, Vol. 1, W. A. Benjamin, New York, 1969.
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362, DOI 10.1007/978-1-4684-9449-5 W. Orlicz, Zue theorie der differentialgleichung $y’ = f(x,y)$, Bull. Int. Acad. Polon. Sci. A 8/9 (1932), 221-228.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1951-1954
- MSC: Primary 58A30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277128-8
- MathSciNet review: 1277128