## Asymptotic behavior of nonexpansive sequences and mean points

HTML articles powered by AMS MathViewer

- by Jong Soo Jung and Jong Seo Park PDF
- Proc. Amer. Math. Soc.
**124**(1996), 475-480 Request permission

## Abstract:

Let $E$ be a real Banach space with norm $\Vert \cdot \Vert$ and let $\{x_n\}_{n \ge 0}$ be a nonexpansive sequence in $E$ (i.e., $\Vert x_{i + 1} - x_{j + 1}\Vert \le \Vert x_i - x_j\Vert$ for all $i, j \ge 0$). Let $K = \bigcap _{n = 1}^{\infty }\overline {co}\{\{x_i - x_{i - 1}\}_{i \ge n}\}$. We deal with the mean point of $\{\frac {x_n}{n}\}$ concerning a Banach limit. We show that if $E$ is reflexive and $d = d(0,K)$, then $d = d(0,\overline {co}\{\frac {x_n - x_0}{n}\})$ and there exists a unique point $z_0$ with $\Vert z_0\Vert = d$ such that $z_0 \in \overline {co}\{\frac {x_n - x_0}{n}\}$. This result is applied to obtain the weak and strong convergence of $\{\frac {x_n}{n}\}$.## References

- Viorel Barbu,
*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843**, DOI 10.1007/978-94-010-1537-0 - Behzad Djafari Rouhani,
*Asymptotic behaviour of unbounded nonexpansive sequences in Banach spaces*, Proc. Amer. Math. Soc.**117**(1993), no. 4, 951–956. MR**1120510**, DOI 10.1090/S0002-9939-1993-1120510-8 - Ky Fan and Irving Glicksberg,
*Some geometric properties of the spheres in a normed linear space*, Duke Math. J.**25**(1958), 553–568. MR**98976** - Kazimierz Goebel and Simeon Reich,
*Uniform convexity, hyperbolic geometry, and nonexpansive mappings*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984. MR**744194** - Elon Kohlberg and Abraham Neyman,
*Asymptotic behavior of nonexpansive mappings in uniformly convex Banach spaces*, Amer. Math. Monthly**88**(1981), no. 9, 698–700. MR**643273**, DOI 10.2307/2320677 - Elon Kohlberg and Abraham Neyman,
*Asymptotic behavior of nonexpansive mappings in normed linear spaces*, Israel J. Math.**38**(1981), no. 4, 269–275. MR**617673**, DOI 10.1007/BF02762772 - A. Pazy,
*Asymptotic behavior of contractions in Hilbert space*, Israel J. Math.**9**(1971), 235–240. MR**282276**, DOI 10.1007/BF02771588 - Andrew T. Plant and Simeon Reich,
*The asymptotics of nonexpansive iterations*, J. Funct. Anal.**54**(1983), no. 3, 308–319. MR**724526**, DOI 10.1016/0022-1236(83)90003-4 - Simeon Reich,
*On the asymptotic behavior of nonlinear semigroups and the range of accretive operators*, J. Math. Anal. Appl.**79**(1981), no. 1, 113–126. MR**603380**, DOI 10.1016/0022-247X(81)90013-5 - Simeon Reich,
*On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. II*, J. Math. Anal. Appl.**87**(1982), no. 1, 134–146. MR**653610**, DOI 10.1016/0022-247X(82)90157-3 - Wataru Takahashi,
*The asymptotic behavior of nonlinear semigroups and invariant means*, J. Math. Anal. Appl.**109**(1985), no. 1, 130–139. MR**796047**, DOI 10.1016/0022-247X(85)90181-7

## Additional Information

**Jong Soo Jung**- Affiliation: Department of Mathematics, Dong–A University, Pusan 604–714, Korea
- Email: jungjs@seanghak.donga.ac.kr.
**Jong Seo Park**- Affiliation: Department of Mathematics, Graduate School, Dong-A University, Pusan 604–714, Korea
- Received by editor(s): March 24, 1994
- Received by editor(s) in revised form: August 22, 1994
- Additional Notes: This research was supported by the Korea Science and Engineering Foundation, project number 941-0100-035-2.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 475-480 - MSC (1991): Primary 47H09
- DOI: https://doi.org/10.1090/S0002-9939-96-03039-0
- MathSciNet review: 1291776