Polynomials with roots modulo every integer
HTML articles powered by AMS MathViewer
- by Daniel Berend and Yuri Bilu PDF
- Proc. Amer. Math. Soc. 124 (1996), 1663-1671 Request permission
Abstract:
Given a polynomial with integer coefficients, we calculate the density of the set of primes modulo which the polynomial has a root. We also give a simple criterion to decide whether or not the polynomial has a root modulo every non-zero integer.References
- James Ax, Solving diophantine problems modulo every prime, Ann. of Math. (2) 85 (1967), 161–183. MR 209224, DOI 10.2307/1970438
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- M. Boshernitzan, On recurrence and spread in dynamical systems, preprint.
- D. Berend and J. E. Harmse, On polynomial-factorial and similar diophantine equations, preprint.
- D. Berend and C. F. Osgood, On the equation $P(x)=n!$ and a question of Erdős, J. Number Theory 42 (1992), 189–193.
- Z. I. Borevich and I. R. Shafarevich, J. Number Theory, Academic Press, New York, 1966.
- J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory (Proceedings of an Instructional Conference, University of Sussex, 1965),, Academic Press and St Edmundsbury Press, Suffolk, 1990.
- P. Erdős and R. Obláth, Über diophantische Gleichungen der Form $n!=x^{p}\pm y^{p}$ und $n!\pm m!=x^{p}$, Acta Szeged 8 (1937), 241–255.
- M. Fried and G. Sacerdote, Solving Diophantine problems over all residue class fields of a number field and all finite fields, Ann. of Math. (2) 104 (1976), no. 2, 203–233. MR 491477, DOI 10.2307/1971045
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- T. Kamae and M. Mendès France, van der Corput’s difference theorem, Israel J. Math. 31 (1978), no. 3-4, 335–342. MR 516154, DOI 10.1007/BF02761498
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- J. C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math. 27 (1983), no. 2, 224–239. MR 694641
- J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271–296. MR 553223, DOI 10.1007/BF01390234
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 409–464. MR 0447191
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990. MR 1055830
- J. Osterlé, Versions effectives du théorème de Chebotarev sous l’hypothése de Riemann généralisé,, Soc. Math. France Astérisque 61 (1979), 165–167.
- A. Sárkőzy, On difference sets of sequences of integers. I, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 1-2, 125–149. MR 466059, DOI 10.1007/BF01896079
- A. Sárközy, On difference sets of sequences of integers. II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 45–53 (1979). MR 536201
- A. Sárközy, On difference sets of sequences of integers. II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 45–53 (1979). MR 536201
- Wolfgang M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory 39 (1991), no. 2, 181–224. MR 1129568, DOI 10.1016/0022-314X(91)90044-C
- Volker Schulze, Die Primteilerdichte von ganzzahligen Polynomen. I, J. Reine Angew. Math. 253 (1972), 175–185 (German). MR 299592, DOI 10.1515/crll.1972.253.175
- Volker Schulze, Die Primteilerdichte von ganzzahligen Polynomen. II, J. Reine Angew. Math. 256 (1972), 153–162 (German). MR 311616, DOI 10.1515/crll.1972.256.153
- Volker Schulze, Die Primteilerdichte von ganzzahligen Polynomen. III, J. Reine Angew. Math. 273 (1975), 144–145 (German). MR 369324, DOI 10.1515/crll.1975.273.144
- B.L. van der Waerden, Algebra I, Springer, 1971.
Additional Information
- Daniel Berend
- Affiliation: Department of Mathematics and Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel
- Email: berend@black.bgu.ac.il
- Yuri Bilu
- Affiliation: Department of Mathematics and Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel and Université Bordeaux 2, Mathématiques Stochastiques, BP26, F-33076 Bordeaux Cedex, France
- Address at time of publication: Max Planck Institute for Mathematics, Gottfried Claren Str. 26, 53225 Bonn, Germany
- Email: yuri@cfgauss.uni-math.gwdg.de
- Received by editor(s): March 7, 1994
- Received by editor(s) in revised form: November 28, 1994
- Communicated by: William W. Adams
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1663-1671
- MSC (1991): Primary 11R09, 11R45; Secondary 11D61, 11U05
- DOI: https://doi.org/10.1090/S0002-9939-96-03210-8
- MathSciNet review: 1307495