Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the existence of solutions
of nonlinear equations

Author: Michal Feckan
Journal: Proc. Amer. Math. Soc. 124 (1996), 1733-1742
MSC (1991): Primary 45M20, 47H05, 47H17
MathSciNet review: 1327010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Results on the existence of solutions are derived for asymptotically quasilinear, nonlinear operator equations. Applications are given to implicit nonlinear integral equations.

References [Enhancements On Off] (What's this?)

  • 1. H. Amann, Fixed points of asymptotically linear maps in ordered Banach spaces, J. Functional Analysis 14 (1973), 162-171. MR 50:3019
  • 2. J. Berkovits & V. Mustonen, An extension of Leray--Schauder degree and applications to nonlinear wave equations, Diff. Int. Equations 3 (1990), 945-963. MR 91j:35179
  • 3. K. Deimling, ``Nonlinear Functional Analysis'', Springer--Verlag, Berlin, 1985. MR 86j:47001
  • 4. M. Feckan, Critical points of asymptotically quadratic functions, Annal. Polon. Math LXI.1 (1995), 63--76.
  • 5. M. Feckan, Nonnegative solutions of nonlinear integral equations, Comment. Math. Univ. Carolinae (to appear).
  • 6. M. Feckan, An inverse function theorem for continuous mappings, J. Math. Anal. Appl. 185 (1994), 118-128. MR 95b:58017
  • 7. R.E. Gaines & J. Mawhin, ``Coincidence Degree, and Nonlinear Differential Equations'', Lec. Not. Math. 568, Springer--Verlag, Berlin, 1977. MR 58:30551
  • 8. A. Granas, On a certain class of nonlinear mappings in Banach spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (1957), 867-871. MR 19:968e
  • 9. R. Guzzardi, Positive solutions of operator equations in the non--differentiable case, in ``Contemporary Mathematics'', Vol. 21, 1983, 137-146. MR 85e:47088
  • 10. A. Kittilä, On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 91 (1994). MR 95e:47079
  • 11. M.A. Krasnoselskii, ``Positive Solutions of Operator Equations'', Noordhoff, Groningen, 1964. MR 31:6107
  • 12. W. Okrasinski, On a non--linear convolution equation occurring in the theory of water percolation, Annal. Polon. Math. 37 (1980), 223-229. MR 82b:76056
  • 13. W. Okrasinski, On the existence and uniqueness of nonnegative solutions of certain nonlinear convolution equation, Annal. Polon. Math. 36 (1979), 61-72. MR 80f:45010
  • 14. W.V. Petryshyn, Solvability of various boundary value problems for the equation $x''=$
    , Pacific J. Math. 122 (1986), 169-195. MR 87g:34022
  • 15. J. Santanilla, Existence of nonnegative solutions of a semilinear equation at resonance with linear growth, Proc. Amer. Math. Soc. 105 (1989), 963-971. MR 89j:34054

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 45M20, 47H05, 47H17

Retrieve articles in all journals with MSC (1991): 45M20, 47H05, 47H17

Additional Information

Michal Feckan
Affiliation: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia

Keywords: Pseudomonotone mappings, integral equations, nonnegative solutions
Received by editor(s): July 8, 1994
Received by editor(s) in revised form: November 9, 1994
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1996 American Mathematical Society