On the perturbation theory of $m$-accretive operators in Banach spaces
HTML articles powered by AMS MathViewer
- by Athanassios G. Kartsatos
- Proc. Amer. Math. Soc. 124 (1996), 1811-1820
- DOI: https://doi.org/10.1090/S0002-9939-96-03349-7
- PDF | Request permission
Abstract:
Let $X$ be a real Banach space. Let $T:X\supset D(T)\to 2^{X}$ be $m$-accretive with $(T+I)^{-1}$ compact. Let $C:X\supset D(T)\to X$ be such that $C(I+\lambda T)^{-1}:X\to X$ is condensing for some $\lambda \in (0,1).$ Let $p\in X$ and assume that there exists a bounded open set $G\subset X$ and $z\in D(T)\cap G$ such that $C(D(T)\cap \overline {G})$ is bounded and \begin{equation*}\langle u+Cx-p,j\rangle \ge 0,\tag *{(*)}\end{equation*} for all $x\in D(T)\cap \partial G,~u\in Tx,~j\in J(x-z).$ Then $p\in (T+C)(D(T)\cap \overline {G}).$ A basic homotopy result of the degree theory for $I-A,$ with $A$ condensing and $D(A)$ possibly unbounded, is used to improve and/or extend recent results by Hirano and Kalinde.References
- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Int. Publ., Leyden (The Netherlands), 1975.
- Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR 0405188
- Yong Zhuo Chen, The generalized degree for compact perturbations of $m$-accretive operators and applications, Nonlinear Anal. 13 (1989), no. 4, 393–403. MR 987376, DOI 10.1016/0362-546X(89)90046-1
- Ioana Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR 1079061, DOI 10.1007/978-94-009-2121-4
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Z. Ding and A. G. Kartsatos, Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces, Nonl. Anal. TMA 25 (1995), 1333–1342.
- Zhengyuan Guan, Ranges of operators of monotone type in Banach space, J. Math. Anal. Appl. 174 (1993), no. 1, 256–264. MR 1212931, DOI 10.1006/jmaa.1993.1115
- Zhengyuan Guan, Solvability of semilinear equations with compact perturbations of operators of monotone type, Proc. Amer. Math. Soc. 121 (1994), no. 1, 93–102. MR 1174492, DOI 10.1090/S0002-9939-1994-1174492-4
- Z. Guan and A. G. Kartsatos, Solvability of nonlinear equations with coercivity generated by compact perturbations of $m$-accretive operators in Banach spaces, Houston J. Math. 21 (1995), 149–188.
- Z. Guan and A. G. Kartsatos, Ranges of perturbed maximal monotone and $m$-accretive operators in Banach spaces, Trans. Amer. Math. Soc. 347 (1995), 2403–2435.
- N. Hirano and A. K. Kalinde, On perturbations of $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. (to appear).
- D. R. Kaplan and A. G. Kartsatos, Ranges of sums and control of nonlinear evolutions with preassigned responses, J. Opt. Th. Appl. 81 (1994), 121-141.
- Athanassios G. Kartsatos, On compact perturbations and compact resolvents of nonlinear $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1189–1199. MR 1216817, DOI 10.1090/S0002-9939-1993-1216817-6
- A. G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter De Gruyter, New York, 1995, pp. 2197–2222.
- A. G. Kartsatos, On the construction of methods of lines for functional evolutions in general Banach spaces, Nonl. Anal. TMA 25 (1995), 1321–1331.
- A. G. Kartsatos, A compact evolution operator generated by a time-dependent $m$-accretive operator in a general Banach space, Math. Ann. 302 (1995), 473–487.
- A. G. Kartsatos, New results in the perturbations theory of maximal monotone and $m$-accretive operators in Banach spaces, Trans. Amer. Math. Soc. (to appear).
- V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford-New York, 1981. MR 616449
- Nai Gong Liu, The generalized degree for $1$-set contraction mapping perturbation of $m$-accretive operator and applications, Nonlinear Anal. 18 (1992), no. 7, 605–618. MR 1157562, DOI 10.1016/0362-546X(92)90001-U
- N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, No. 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978. MR 0493564
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Wolodymyr V. Petryshyn, Approximation-solvability of nonlinear functional and differential equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 171, Marcel Dekker, Inc., New York, 1993. MR 1200455
Bibliographic Information
- Athanassios G. Kartsatos
- Affiliation: Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700
- Email: hermes@gauss.math.usf.edu
- Received by editor(s): December 5, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1811-1820
- MSC (1991): Primary 47H17; Secondary 47B44, 47H09, 47H10
- DOI: https://doi.org/10.1090/S0002-9939-96-03349-7
- MathSciNet review: 1327021