-sequentiality and -Fréchet-Urysohn property of Franklin compact spaces

Authors:
S. Garcia-Ferreira and V. I. Malykhin

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2267-2273

MSC (1991):
Primary 54A20, 54A35

DOI:
https://doi.org/10.1090/S0002-9939-96-03322-9

MathSciNet review:
1327014

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Franklin compact spaces defined by maximal almost disjoint families of subsets of are considered from the view of its -sequentiality and -Fréchet-Urysohn-property for ultrafilters . Our principal results are the following: CH implies that for every -point there are a Franklin compact -Fréchet-Urysohn space and a Franklin compact space which is not -Fréchet-Urysohn; and, assuming CH, for every Franklin compact space there is a -point such that it is not -Fréchet-Urysohn. Some new problems are raised.

**[B]**A. I. Baskirov,*On the classification of quotient mappings and compact sequential spaces*, Soviet Math. Dokl.**15**(1974), 1104--1109. MR**50:11159****[B]**------,*On maximal disjoint systems and Franklin bicompacta*, Soviet Math. Dokl.**19**(1978), 864--868. MR**80m:54032****[BM]**B. Boldjiev and V. I. Malichin,*The sequentiality is equivalent to the -Fréchet-Urysohn property*, Comment. Math. Univ. Carolin.**31**(1990), 23--25. MR**91g:54005****[F]**S. P. Franklin,*Spaces in which sequences suffice*II, Fund. Math.**61**(1967), 51--56. MR**36:5882****[G]**S. Garcia-Ferreira,*On -spaces and -sequential spaces*, Comment. Math. Univ. Carolin.**32**(1991), 161--171. MR**92m:54006****[GT]**S. Garcia-Ferreira and A. Tamariz-Mascarua,*On -sequential -compact spaces*, Comment. Math. Univ. Carolin.**34**(1993), 347--356. MR**94m:54008****[Ka]**M. Katetov,*Products of filters*, Comment. Math. Univ. Carolin.**9**(1968), 173--189. MR**40:3496****[Koc]**L. D. Kocinac,*A generalization of chain-net spaces*, Publ. Inst. Math. (Beograd)**44**(58) (1988), 109--114. MR**90h:54006****[Ko]**A. P. Kombarov,*On the theorem of A. M. Stone*, Soviet Math. Dokl.**27**(1983), 544--547. MR**85j:54029****[Ma]**V. I. Malykhin,*Sequential bicompacta: \v{C}ech-Stone extensions and -points*, Moscow Univ. Math. Bull.**30**(1975), 18--23. MR**51:11432****[Ma]**------,*On sequential and Fréchet-Urysohn bicompacta*, Moscow Univ. Math. Bull.**31**(1976) 33--37. MR**58:7534****[Ma]**------,*The sequentiality and the Fréchet-Urysohn property with respect to ultrafilters*, Acta Univ. Carolin.---Math. Phys.**31**(1990), 65--69. MR**92h:54006****[Mi]**Ch. Mills,*An easier proof of the Shelah -point independence theorem*(to appear).**[R]**W. Rudin,*Homogeneity problems in the theory of \v{C}ech compactifications*, Duke Math. J.**23**(1956), 409--419. MR**18:324****[S]**A. Szymanski,*The existence of -points of for*, Colloq. Math.**37**(1977), 279--184. MR**58:7571****[W]**E. L. Wimmers,*The Shelah -point independence theorem*, Israel J. Math.**43**(1982), 28--48. MR**85e:03118**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54A20,
54A35

Retrieve articles in all journals with MSC (1991): 54A20, 54A35

Additional Information

**S. Garcia-Ferreira**

Affiliation:
Instituto de Matematicas, Unidad Morelia (UNAM), Nicolás Romero 150, Morelia, Michoacan 58000, México

Email:
garcia@servidor.unam.mx, sgarcia@zeus.ccu.umich.mx

**V. I. Malykhin**

Affiliation:
State Academy of Management, Rjazanskij Prospekt 99, Moscow, Russia 109 542

Email:
matem@acman.msk.su

DOI:
https://doi.org/10.1090/S0002-9939-96-03322-9

Keywords:
Ultrafilter,
MAD family,
Franklin compact space,
Rudin-Keisler order,
$p$-sequential,
$p$-Fr\'echet Urysohn,
ultra-sequential,
ultra-Fr\'echet-Urysohn

Received by editor(s):
July 5, 1993

Received by editor(s) in revised form:
January 27, 1995

Communicated by:
Franklin D. Tall

Article copyright:
© Copyright 1996
American Mathematical Society