The expected value of the number of real zeros
of a random sum of Legendre polynomials
Author:
J. Ernest Wilkins Jr.
Journal:
Proc. Amer. Math. Soc. 125 (1997), 1531-1536
MSC (1991):
Primary 60G99; Secondary 41A60
DOI:
https://doi.org/10.1090/S0002-9939-97-03826-4
MathSciNet review:
1377012
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is known that the expected number of zeros in the interval of the sum
, in which
is the normalized Legendre polynomial of degree
and the coefficients
are independent normally distributed random variables with mean 0 and variance 1, is asymptotic to
for large
. We improve this result and show that this expected number is
for any positive
.
- 1. Minaketan Das, Real zeros of a random sum of orthogonal polynomials, Proc. Amer. Math. Soc. 27 (1971), 147–153. MR 268933, https://doi.org/10.1090/S0002-9939-1971-0268933-9
- 2. A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Probability and Mathematical Statistics, Academic Press, Inc., Orlando, FL, 1986. MR 856019
- 3. T. J. Stieltjes, Sur la valeur asymptotique des polynomes de Legendre, Comptes Rendu de l'Academie des Sciences, Paris 110 (1890), 1026-1027.
- 4. T. J. Stieltjes, Sur les polynomes de Legendre, Annales de la Faculté des Sciences de Toulouse, 4 (1890), 17 pages.
- 5. G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publications, XXIII, Providence, Rhode Island, 1939. MR 1:14b
- 6. F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697
- 7. E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition. Reprinted, Cambridge University Press, New York, 1962. MR 0178117
- 8. L. V. Ahlfors, Complex Analysis, McGraw Hill Book Co., New York, 1953. MR 14:857a
- 9. W. Feller, An Introduction,n to Probability Theory and its Applications, Vol. I, 2nd Edition, John Wiley and Sons, New York, 1957. MR 19:466a
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60G99, 41A60
Retrieve articles in all journals with MSC (1991): 60G99, 41A60
Additional Information
J. Ernest Wilkins Jr.
Affiliation:
Department of Mathematics, Clark Atlanta University, Atlanta, Georgia 30314
DOI:
https://doi.org/10.1090/S0002-9939-97-03826-4
Keywords:
Real zeros,
random polynomials,
Legendre polynomials
Received by editor(s):
November 1, 1995
Communicated by:
Richard T. Durrett
Article copyright:
© Copyright 1997
American Mathematical Society