## Affine semigroup rings that are complete intersections

HTML articles powered by AMS MathViewer

- by Klaus G. Fischer, Walter Morris and Jay Shapiro PDF
- Proc. Amer. Math. Soc.
**125**(1997), 3137-3145 Request permission

## Abstract:

This paper presents a result concerning the structure of affine semigroup rings that are complete intersections. It generalizes to arbitrary dimensions earlier results for semigroups of dimension less than four. The proof depends on a decomposition theorem for mixed dominating matrices.## References

- Richard A. Brualdi, Keith L. Chavey, and Bryan L. Shader,
*Rectangular $L$-matrices*, Linear Algebra Appl.**196**(1994), 37–61. MR**1273974**, DOI 10.1016/0024-3795(94)90314-X - Richard A. Brualdi and Herbert J. Ryser,
*Combinatorial matrix theory*, Encyclopedia of Mathematics and its Applications, vol. 39, Cambridge University Press, Cambridge, 1991. MR**1130611**, DOI 10.1017/CBO9781107325708 - Charles Delorme,
*Sous-monoïdes d’intersection complète de $N.$*, Ann. Sci. École Norm. Sup. (4)**9**(1976), no. 1, 145–154. MR**407038** - Klaus G. Fischer and Jay Shapiro,
*Generating prime ideals in the Minkowski ring of polytopes*, Computational algebra (Fairfax, VA, 1993) Lecture Notes in Pure and Appl. Math., vol. 151, Dekker, New York, 1994, pp. 111–130. MR**1245950** - K. Fischer, J. Shapiro,
*Mixed matrices and binomial ideals*, Journal of Pure and Applied Algebra, 113 (1996), 39–54. - R. L. Graham and H. O. Pollak,
*On the addressing problem for loop switching*, Bell System Tech. J.**50**(1971), 2495–2519. MR**289210**, DOI 10.1002/j.1538-7305.1971.tb02618.x - Jürgen Herzog,
*Generators and relations of abelian semigroups and semigroup rings*, Manuscripta Math.**3**(1970), 175–193. MR**269762**, DOI 10.1007/BF01273309 - Victor Klee,
*Recursive structure of $S$-matrices and an $O(m^2)$ algorithm for recognizing strong sign solvability*, Linear Algebra Appl.**96**(1987), 233–247. MR**910997**, DOI 10.1016/0024-3795(87)90347-8 - J. C. Rosales and Pedro A. García-Sánchez,
*On complete intersection affine semigroups*, Comm. Algebra**23**(1995), no. 14, 5395–5412. MR**1363611**, DOI 10.1080/00927879508825540 - Alexander Schrijver,
*Theory of linear and integer programming*, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR**874114**

## Additional Information

**Klaus G. Fischer**- Affiliation: Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030
- Email: kfischer@gmu.edu
**Walter Morris**- Affiliation: Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030
- Email: wmorris@gmu.edu
**Jay Shapiro**- Affiliation: Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030
- Email: jshapiro@gmu.edu
- Received by editor(s): January 22, 1996
- Received by editor(s) in revised form: May 13, 1996
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 3137-3145 - MSC (1991): Primary 13C40; Secondary 14M10
- DOI: https://doi.org/10.1090/S0002-9939-97-03920-8
- MathSciNet review: 1401741