Remarks on the non-Cohen-Macaulay locus of Noetherian schemes
HTML articles powered by AMS MathViewer
- by Nguyen Tu Cuong
- Proc. Amer. Math. Soc. 126 (1998), 1017-1022
- DOI: https://doi.org/10.1090/S0002-9939-98-04160-4
- PDF | Request permission
Abstract:
In this paper we give a notion of polynomial type $p(X)$ of a Noetherian scheme $X$ and define the function $dp: X\longrightarrow \mathbb {Z}$ by $dp(x)=\dim O_{X,x} -p(O_{X,x} )$ for all $x\in X.$ Then we show that if $X$ admits a dualizing complex and $X$ is equidimensional, $dp$ is (lower) semicontinuous; moreover, in that case, the non-Cohen-Macaulay locus nCM$(X)=\{ x\in X\mid O_{X,x}$ is not Cohen-Macaulay} is biequidimensional iff $dp$ is constant on nCM$(X).$References
- Nguyễn Tụ’ Cu’ò’ng, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 479–488. MR 1094747, DOI 10.1017/S0305004100069929
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Nguyen Tu Cuong and Nguyen Duc Minh, On the openness of the locus of points having polynomial type bounded above by a constant, Tạp chí Toán Học J. Math. 20 (1992), no. 1, 71–76. MR 1367451
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468, DOI 10.1007/978-3-662-21576-0
- Peter Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Mathematics, vol. 907, Springer-Verlag, Berlin-New York, 1982 (German). With an English summary. MR 654151, DOI 10.1007/BFb0094123
Bibliographic Information
- Nguyen Tu Cuong
- Affiliation: Institute of Mathematics, P.O. Box 631, BoHo, 10.000 Hanoi, Vietnam
- Email: ntcuong@thevinh.ac.vn
- Received by editor(s): July 3, 1995
- Received by editor(s) in revised form: October 7, 1996
- Additional Notes: The author is partially supported by the National Basic Research Program of Vietnam.
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1017-1022
- MSC (1991): Primary 13C99; Secondary 13H10, 14M99
- DOI: https://doi.org/10.1090/S0002-9939-98-04160-4
- MathSciNet review: 1425118