Central extensions of some Lie algebras
HTML articles powered by AMS MathViewer
- by Wanglai Li and Robert L. Wilson
- Proc. Amer. Math. Soc. 126 (1998), 2569-2577
- DOI: https://doi.org/10.1090/S0002-9939-98-04348-2
- PDF | Request permission
Abstract:
We consider three Lie algebras: $Der \mathbb {C}((t))$, the Lie algebra of all derivations on the algebra $\mathbb {C}((t))$ of formal Laurent series; the Lie algebra of all differential operators on $\mathbb {C}((t))$; and the Lie algebra of all differential operators on $\mathbb {C}((t))\otimes \mathbb {C}^n.$ We prove that each of these Lie algebras has an essentially unique nontrivial central extension.References
- Richard E. Block, On the Mills-Seligman axioms for Lie algebras of classical type, Trans. Amer. Math. Soc. 121 (1966), 378–392. MR 188356, DOI 10.1090/S0002-9947-1966-0188356-3
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI 10.1073/pnas.83.10.3068
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- B. L. Feĭgin, Lie algebras $\textrm {gl}(\lambda )$ and cohomology of a Lie algebra of differential operators, Uspekhi Mat. Nauk 43 (1988), no. 2(260), 157–158 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 2, 169–170. MR 940679, DOI 10.1070/RM1988v043n02ABEH001720
- Edward Frenkel, Victor Kac, Andrey Radul, and Weiqiang Wang, $\scr W_{1+\infty }$ and $\scr W(\mathfrak {g}\mathfrak {l}_N)$ with central charge $N$, Comm. Math. Phys. 170 (1995), no. 2, 337–357. MR 1334399, DOI 10.1007/BF02108332
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- I. M. Gel′fand and D. B. Fuks, Cohomologies of the Lie algebra of vector fields on the circle, Funkcional. Anal. i Priložen. 2 (1968), no. 4, 92–93 (Russian). MR 0245035
- Victor G. Kac and Dale H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 6, 3308–3312. MR 619827, DOI 10.1073/pnas.78.6.3308
- Victor Kac and Andrey Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys. 157 (1993), no. 3, 429–457. MR 1243706, DOI 10.1007/BF02096878
- Wang Lai Li, $2$-cocyles on the algebra of differential operators, J. Algebra 122 (1989), no. 1, 64–80. MR 994935, DOI 10.1016/0021-8693(89)90237-8
Bibliographic Information
- Wanglai Li
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- Email: wli@math.rutgers.edu
- Robert L. Wilson
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- Email: rwilson@math.rutgers.edu
- Received by editor(s): September 13, 1996
- Received by editor(s) in revised form: February 4, 1997
- Additional Notes: The second author was supported in part by NSF Grant DMS-9401851
- Communicated by: Roe Goodman
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2569-2577
- MSC (1991): Primary 17B65, 17B56; Secondary 17B66
- DOI: https://doi.org/10.1090/S0002-9939-98-04348-2
- MathSciNet review: 1451817