The structure of some virtually free pro-$p$ groups
HTML articles powered by AMS MathViewer
- by Claus Scheiderer
- Proc. Amer. Math. Soc. 127 (1999), 695-700
- DOI: https://doi.org/10.1090/S0002-9939-99-04765-6
- PDF | Request permission
Abstract:
We prove two conjectures on pro-$p$ groups made by Herfort, Ribes and Zalesskii. The first says that a finitely generated pro-$p$ group which has an open free pro-$p$ subgroup of index $p$ is a free pro-$p$ product $H_0*(S_1\times H_1)*\cdots *(S_m\times H_m)$, where the $H_i$ are free pro-$p$ of finite rank and the $S_i$ are cyclic of order $p$. The second says that if $F$ is a free pro-$p$ group of finite rank and $S$ is a finite $p$-group of automorphisms of $F$, then $\operatorname {Fix}(S)$ is a free factor of $F$. The proofs use cohomology, and in particular a “Brown theorem” for profinite groups.References
- Joan L. Dyer and G. Peter Scott, Periodic automorphisms of free groups, Comm. Algebra 3 (1975), 195–201. MR 369529, DOI 10.1080/00927877508822042
- Dion Gildenhuys and Luis Ribes, Profinite groups and Boolean graphs, J. Pure Appl. Algebra 12 (1978), no. 1, 21–47. MR 488811, DOI 10.1016/0022-4049(78)90019-1
- Wolfgang N. Herfort and Luis Ribes, On automorphisms of free pro-$p$-groups. I, Proc. Amer. Math. Soc. 108 (1990), no. 2, 287–295. MR 984794, DOI 10.1090/S0002-9939-1990-0984794-6
- Wolfgang N. Herfort, Luis Ribes, and Pavel A. Zalesskii, Fixed points of automorphisms of free pro-$p$ groups of rank $2$, Canad. J. Math. 47 (1995), no. 2, 383–404. MR 1335085, DOI 10.4153/CJM-1995-021-6
- W. Herfort, L. Ribes, P. A. Zalesskii, Finite extensions of free pro-$p$ groups of rank at most two, Preprint 1996, to appear in Israel J. Math.
- Jürgen Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Arch. Math. (Basel) 22 (1971), 337–357 (German). MR 347992, DOI 10.1007/BF01222586
- Claus Scheiderer, Real and étale cohomology, Lecture Notes in Mathematics, vol. 1588, Springer-Verlag, Berlin, 1994. MR 1321819, DOI 10.1007/BFb0074269
- Claus Scheiderer, Farrell cohomology and Brown theorems for profinite groups, Manuscripta Math. 91 (1996), no. 2, 247–281. MR 1411658, DOI 10.1007/BF02567954
- Jean-Pierre Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413–420 (French). MR 180619, DOI 10.1016/0040-9383(65)90006-6
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- P. A. Zalesskiĭ and O. V. Mel′nikov, Subgroups of profinite groups acting on trees, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 419–439, 559 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 405–424. MR 942131, DOI 10.1070/SM1989v063n02ABEH003282
Bibliographic Information
- Claus Scheiderer
- Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
- MR Author ID: 212893
- Email: claus.scheiderer@mathematik.uni-regensburg.de
- Received by editor(s): July 1, 1997
- Communicated by: Ronald M. Solomon
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 695-700
- MSC (1991): Primary 20E18; Secondary 20E34, 20E36, 20E06
- DOI: https://doi.org/10.1090/S0002-9939-99-04765-6
- MathSciNet review: 1487337