Equivalence of domains with isomorphic semigroups of endomorphisms
Author:
Sergei Merenkov
Journal:
Proc. Amer. Math. Soc. 130 (2002), 1743-1753
MSC (2000):
Primary 32A10, 08A35
DOI:
https://doi.org/10.1090/S0002-9939-01-06409-7
Published electronically:
November 9, 2001
MathSciNet review:
1887022
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For two bounded domains in
whose semigroups of analytic endomorphisms
are isomorphic with an isomorphism
, Eremenko proved in 1993 that there exists a conformal or anticonformal map
such that
for all
.
In the present paper we prove an analogue of this result for the case of bounded domains in .
- 1. V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szűcs]. MR 947141
- 2. S. Bochner, W. Martin, Several Complex Variables, Princeton University Press, 1948. MR 10:366a
- 3. Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383
- 4. A. Erëmenko, On the characterization of a Riemann surface by its semigroup of endomorphisms, Trans. Amer. Math. Soc. 338 (1993), no. 1, 123–131. MR 1106188, https://doi.org/10.1090/S0002-9947-1993-1106188-2
- 5. Maurice Heins, Complex function theory, Pure and Applied Mathematics, Vol. 28, Academic Press, New York-London, 1968. MR 0239054
- 6. A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms, Complex Variables Theory Appl. 18 (1992), no. 3-4, 149–154. MR 1157923, https://doi.org/10.1080/17476939208814541
- 7. Kenneth Hoffman and Ray Kunze, Linear algebra, Second edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0276251
- 8. W. Hurewicz, H. Wallman, Dimension Theory, Princeton University Press, 1948. MR 3:312b
- 9. Hej Iss’sa, On the meromorphic function field of a Stein variety, Ann. of Math. (2) 83 (1966), 34–46. MR 185143, https://doi.org/10.2307/1970468
- 10. Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983
- 11. Steven G. Krantz, Function theory of several complex variables, John Wiley & Sons, Inc., New York, 1982. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 635928
- 12. K. D. Magill Jr., A survey of semigroups of continuous selfmaps, Semigroup Forum 11 (1975/76), no. 3, 189–282. MR 393330, https://doi.org/10.1007/BF02195270
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32A10, 08A35
Retrieve articles in all journals with MSC (2000): 32A10, 08A35
Additional Information
Sergei Merenkov
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email:
smerenko@math.purdue.edu
DOI:
https://doi.org/10.1090/S0002-9939-01-06409-7
Received by editor(s):
December 12, 2000
Published electronically:
November 9, 2001
Additional Notes:
This research was supported by NSF, DMS 0072197
Communicated by:
Steven R. Bell
Article copyright:
© Copyright 2001
American Mathematical Society