Operator Hilbert spaces without the operator approximation property
Author:
Alvaro Arias
Journal:
Proc. Amer. Math. Soc. 130 (2002), 2669-2677
MSC (1991):
Primary 46B28; Secondary 46B20, 47D15
DOI:
https://doi.org/10.1090/S0002-9939-02-06387-6
Published electronically:
March 13, 2002
MathSciNet review:
1900875
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We use a technique of Szankowski to construct operator Hilbert spaces that do not have the operator approximation property, including an example in a noncommutative space for
.
- [BP] David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, https://doi.org/10.1016/0022-1236(91)90042-4
- [ER1] Edward G. Effros and Zhong-Jin Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), no. 3, 329–337. MR 1127754, https://doi.org/10.4153/CMB-1991-053-x
- [ER2] Edward G. Effros and Zhong-Jin Ruan, On approximation properties for operator spaces, Internat. J. Math. 1 (1990), no. 2, 163–187. MR 1060634, https://doi.org/10.1142/S0129167X90000113
- [ER3] E. Effros and Z.J. Ruan, Operator spaces, Oxford University Press, 2000. CMP 2001:05
- [E] Per Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309–317. MR 402468, https://doi.org/10.1007/BF02392270
- [J] M. Junge, Factorization theory for operator spaces, Habilitation thesis, Kiel University, 1996.
- [G] A. Grothendieck, Produits tensoriels topoligiques et espaces nucleaires, Mem. Amer. Math. Soc. 16 (1955). MR 17:763c
- [LT] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- [L-P] Robert F. Olin and James E. Thomson, Cellular-indecomposable subnormal operators. II, Integral Equations Operator Theory 9 (1986), no. 4, 600–609. MR 853632, https://doi.org/10.1007/BF01204632
- [L-PP] Françoise Lust-Piquard and Gilles Pisier, Noncommutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), no. 2, 241–260. MR 1150376, https://doi.org/10.1007/BF02384340
- [P1] Gilles Pisier, The operator Hilbert space 𝑂𝐻, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103. MR 1342022, https://doi.org/10.1090/memo/0585
- [P2] Gilles Pisier, Non-commutative vector valued 𝐿_{𝑝}-spaces and completely 𝑝-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908
- [P3] G. Pisier, An introduction to the theory of operator spaces (to appear).
- [S] A. Szankowski, Subspaces without the approximation property, Israel J. Math. 30 (1978), no. 1-2, 123–129. MR 508257, https://doi.org/10.1007/BF02760833
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B28, 46B20, 47D15
Retrieve articles in all journals with MSC (1991): 46B28, 46B20, 47D15
Additional Information
Alvaro Arias
Affiliation:
Division of Mathematics and Statistics, The University of Texas at San Antonio, San Antonio, Texas 78249
Email:
arias@math.utsa.edu
DOI:
https://doi.org/10.1090/S0002-9939-02-06387-6
Received by editor(s):
October 10, 2000
Received by editor(s) in revised form:
April 12, 2001
Published electronically:
March 13, 2002
Communicated by:
N. Tomczak-Jaegermann
Article copyright:
© Copyright 2002
American Mathematical Society