$G$-coincidences for maps of homotopy spheres into CW-complexes
HTML articles powered by AMS MathViewer
- by Daciberg L. Gonçalves, Jan Jaworowski and Pedro L. Q. Pergher
- Proc. Amer. Math. Soc. 130 (2002), 3111-3115
- DOI: https://doi.org/10.1090/S0002-9939-02-06435-3
- Published electronically: March 12, 2002
- PDF | Request permission
Abstract:
Let $G$ be a finite group acting freely in a CW-complex $\Sigma ^{m}$ which is a homotopy $m$-dimensional sphere and let $f:\Sigma ^{m} \to Y$ be a map of $\Sigma ^{m}$ to a finite $k$-dimensional CW-complex $Y$. We show that if $m\geq \vert G\vert k$, then $f$ has an $(H,G)$-coincidence for some nontrivial subgroup $H$ of $G$.References
- A. Adem and J. Milgram, Cohomology of groups, Springer-Verlag, New York-Heidelberg-Berlin (1982).
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- M. Golasiński and D. L. Gonçalves, Homotopy spherical space forms - a numerical bound for homotopy types, Hiroshima Mathematical Journal 31 (2001), 107–116.
- Daciberg L. Gonçalves and Pedro L. Q. Pergher, $Z_p$-coincidences for maps of spheres into CW complexes, Kobe J. Math. 15 (1998), no. 2, 191–195. MR 1686562
- Marek Izydorek and Jan Jaworowski, Antipodal coincidence for maps of spheres into complexes, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1947–1950. MR 1242089, DOI 10.1090/S0002-9939-1995-1242089-4
- Jan Jaworowski, Periodic coincidence for maps of spheres, Kobe J. Math. 17 (2000), no. 1, 21–26. MR 1801262
- Neža Mramor-Kosta, Coincidence points of maps on $Z_{p^\alpha }$-spaces, Proceedings of the Eleventh International Conference of Topology (Trieste, 1993), 1993, pp. 379–389 (1994) (English, with English and Italian summaries). MR 1346334
- E.V. Ščepin, On a Problem of L. A. Tumarkin, Soviet Math. Dokl. 15 (1974), 1024–1026.
- E. Spanier, Algebraic Topology, Academic Press, 1988.
- Richard G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267–291. MR 124895, DOI 10.2307/1970135
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
Bibliographic Information
- Daciberg L. Gonçalves
- Affiliation: Instituto de Matemática e Estatísca, Universidade de São Paulo, Rua do Matão, 1010, Agência Jardim Paulistano, Caixa Postal 66281, CEP 05315-970, São Paulo, SP, Brasil
- Email: dlgoncal@ime.usp.br.
- Jan Jaworowski
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405-5701
- Email: jaworows@indiana.edu.
- Pedro L. Q. Pergher
- Affiliation: Departamento de Matemática, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, Caixa Postal 676, CEP 13.565-905, São Carlos, SP, Brasil
- Email: pergher@dm.ufscar.br.
- Received by editor(s): December 14, 2000
- Received by editor(s) in revised form: May 10, 2001
- Published electronically: March 12, 2002
- Additional Notes: The first author was partially supported by CNPq and FAPESP and the third author was partially supported by CNPq
- Communicated by: Paul Goerss
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3111-3115
- MSC (1991): Primary 55M20; Secondary 55M35
- DOI: https://doi.org/10.1090/S0002-9939-02-06435-3
- MathSciNet review: 1908937