On pro-unipotent groups satisfying the Golod–Shafarevich condition
HTML articles powered by AMS MathViewer
- by M. Kassabov
- Proc. Amer. Math. Soc. 131 (2003), 329-336
- DOI: https://doi.org/10.1090/S0002-9939-02-06824-7
- Published electronically: September 19, 2002
- PDF | Request permission
Abstract:
We prove that a pro-unipotent group satisfying the Golod–Shafarevich condition contains a free non-abelian pro-unipotent group. Together with the result of A. Magid this implies that such a group is not linear.References
- Vesselin Drensky, Free algebras and PI-algebras, Springer-Verlag Singapore, Singapore, 2000. Graduate course in algebra. MR 1712064
- Michael Freedman, Richard Hain, and Peter Teichner, Betti number estimates for nilpotent groups, Fields Medallists’ lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 413–434. MR 1622914, DOI 10.1142/9789812385215_{0}045
- E. S. Golod, On nil-algebras and finitely approximable $p$-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273–276 (Russian). MR 0161878
- E. S. Golod and I. R. Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261–272 (Russian). MR 0161852
- Alexander Lubotzky and Andy R. Magid, Free prounipotent groups, J. Algebra 80 (1983), no. 2, 323–349. MR 691808, DOI 10.1016/0021-8693(83)90005-4
- Alexander Lubotzky and Andy R. Magid, Cohomology, Poincaré series, and group algebras of unipotent groups, Amer. J. Math. 107 (1985), no. 3, 531–553. MR 789654, DOI 10.2307/2374368
- Andy R. Magid, Identities for prounipotent groups, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 281–290. MR 1278711, DOI 10.1090/pspum/056.1/1278711
- Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
- Peter Roquette, On class field towers, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) Thompson, Washington, D.C., 1967, pp. 231–249. MR 0218331
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- John S. Wilson, Finite presentations of pro-$p$ groups and discrete groups, Invent. Math. 105 (1991), no. 1, 177–183. MR 1109625, DOI 10.1007/BF01232262
- E. Zelmanov, On groups satisfying the Golod-Shafarevich condition, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 223–232. MR 1765122
Bibliographic Information
- M. Kassabov
- Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Ave., P.O. Box 208283, New Haven, Connecticut 06520-8283
- Email: martin.kassabov@yale.edu
- Received by editor(s): November 16, 2000
- Published electronically: September 19, 2002
- Communicated by: Lance W. Small
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 329-336
- MSC (2000): Primary 20E18; Secondary 17B65, 22E65
- DOI: https://doi.org/10.1090/S0002-9939-02-06824-7
- MathSciNet review: 1933320