A global compactness result for singular elliptic problems involving critical Sobolev exponent

Authors:
Daomin Cao and Shuangjie Peng

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1857-1866

MSC (2000):
Primary 35J60; Secondary 35B33

DOI:
https://doi.org/10.1090/S0002-9939-02-06729-1

Published electronically:
October 1, 2002

MathSciNet review:
1955274

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a bounded domain such that . Let be a (P.S.) sequence of the functional . We study the limit behaviour of and obtain a global compactness result.

**[1]**Adimurthi and M. Struwe,*Global compactness properties of semilinear elliptic equations with critical exponential growth*, J. Funct. Anal.,**175**(2000), 125-167. MR**2001g:35063****[2]**H.Brezis and E.Lieb,*A relation between pointwise convergence of functions and convergence of functionals*, Proc. AMS.,**88**(1983),486-490. MR**84e:28003****[3]**H. Brezis and L. Nirenberg,*Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent*, Comm. Pure Appl. Math.,**36**(1983), 437-477. MR**84h:35059****[4]**F. Catrina and Z.Q. Wang,*On the Caffarelli-Kohn-Nirenberg inequalities:sharp constants, existence(and nonexistence), and symmetry of extremal functions*, Comm. Pure Appl. Math.,**53**(2000), 1-30.**[5]**K.S.Chou and C.W. Chu,*On the best constant for a weighted Sobolev-Hardy inequality*, J. London Math. Soc.,**48**(1993), 137-151. MR**94h:46052****[6]**J. M. Coron,*Topologie et cas limite des injections de Sobolev*, C. R. Acad. Sci. Paris, Ser.I,**299**(1984), 209-212. MR**86b:35059****[7]**W.-Y. Ding,*Positive solution of on contractible domains*, J. Partial Diff. Equats.,**2**(1989), 83-88. MR**91a:35012****[8]**H. Egnell,*Elliptic boundary value problems with singular coefficients and critical nonlinearities*, Indiana Univ. Math. J.,**38**(1989), 235-251. MR**90g:35055****[9]**J. P. Garcia Azorero and I. Peral Alonso,*Hardy inequalities and some critical elliptic and parabolic problems*, J. Diff. Equats.,**144**(1998), 441-476. MR**99f:35099****[10]**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order,*Second edition, Spring-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. MR**86c:35035****[11]**E. Jannelli,*The role played by space dimension in elliptic critical problems*, J. Diff. Equats.,**156**(1999), 407-426. MR**2000f:35053****[12]**P. L. Lions,*The concentration compactness principle in the calculus of variations. The limit case (I)*, Revista Math. Ibero.,**1**(1985), 145-201. MR**87c:49007****[13]**D. Pierotti and S. Terracini,*On a Neumann problem with critical exponent and critical nonlinearity on the boundary*, Comm. PDE,**20**(1995), 1155-1187. MR**96f:35060****[14]**M. Struwe,*A global compactness result for elliptic boundary value problems involving limiting nonlinearities*, Math. Z.,**187**(1984), 511-517. MR**86k:35046****[15]**S. Terracini,*On positive solutions to a class equations with a singular coefficient and critical exponent*, Adv. Diff. Equats.,**2**(1996), 241-264. MR**97b:35057****[16]**S.Yan,*A global compactness result for quasilinear elliptic boundary value problems involving limiting nonlinearities*, Chinese Ann. Math.,**16A**(1995), 397-402.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J60,
35B33

Retrieve articles in all journals with MSC (2000): 35J60, 35B33

Additional Information

**Daomin Cao**

Affiliation:
Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

Email:
dmcao@mail.amt.ac.cn

**Shuangjie Peng**

Affiliation:
Department of Mathematics, Xiao Gan University, Xiao Gan, People’s Republic of China – and – Institute of Applied Mathematics, AMSS., Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

Email:
pengsj@mail.amss.ac.cn

DOI:
https://doi.org/10.1090/S0002-9939-02-06729-1

Keywords:
Palais-Smale sequence,
compactness,
Sobolev and Hardy critical exponents

Received by editor(s):
December 2, 2001

Received by editor(s) in revised form:
January 31, 2002

Published electronically:
October 1, 2002

Additional Notes:
The first author was supported by Special Funds For Major States Basic Research Projects of China (G1999075107) and Knowledge Innovation Funds of CAS in China.

The second author was supported by Knowledge Innovation Funds of CAS in China

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2002
American Mathematical Society