Spectral radii and eigenvalues of subdivision operators
HTML articles powered by AMS MathViewer
- by Di-Rong Chen
- Proc. Amer. Math. Soc. 132 (2004), 1113-1123
- DOI: https://doi.org/10.1090/S0002-9939-03-07194-6
- Published electronically: October 9, 2003
- PDF | Request permission
Abstract:
This paper discusses the spectra of matrix subdivision operators. We establish some formulas for spectral radii of subdivision operators on various invariant subspaces in $\ell _{p}$. A formula for the spectral radius of a subdivision operator, in terms of the moduli of eigenvalues, is derived under a mild condition. The results are even new in the scalar case. In this case, we show that the subdivision operator has no eigenvector in $\ell _{p}$ if the corresponding subdivision scheme converges for some $p\in [1, \infty )$.References
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- Di-Rong Chen, Algebraic properties of subdivision operators with matrix mask and their applications, J. Approx. Theory 97 (1999), no. 2, 294–310. MR 1682955, DOI 10.1006/jath.1997.3266
- D. R. Chen, Construction of smooth refinable function vectors by cascade algorithms, SIAM J. Numer. Anal. 40 (2002), 1354-1368.
- Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), no. 5, 1388–1410. MR 1112515, DOI 10.1137/0522089
- T. N. T. Goodman, Charles A. Micchelli, and J. D. Ward, Spectral radius formulas for subdivision operators, Recent advances in wavelet analysis, Wavelet Anal. Appl., vol. 3, Academic Press, Boston, MA, 1994, pp. 335–360. MR 1244611
- Mark C. Ho, Spectra of slant Toeplitz operators with continuous symbols, Michigan Math. J. 44 (1997), no. 1, 157–166. MR 1439675, DOI 10.1307/mmj/1029005627
- Rong Qing Jia, Subdivision schemes in $L_p$ spaces, Adv. Comput. Math. 3 (1995), no. 4, 309–341. MR 1339166, DOI 10.1007/BF03028366
- R. Q. Jia, S. D. Riemenschneider, and D. X. Zhou, Approximation by multiple refinable functions, Canad. J. Math. 49 (1997), no. 5, 944–962. MR 1604122, DOI 10.4153/CJM-1997-049-8
- Ka-Sing Lau and Jianrong Wang, Characterization of $L^p$-solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), no. 4, 1018–1046. MR 1338372, DOI 10.1137/S0036141092238771
- C. A. Micchelli and Thomas Sauer, Regularity of multiwavelets, Adv. Comput. Math. 7 (1997), no. 4, 455–545. MR 1470295, DOI 10.1023/A:1018971524949
- Charles A. Micchelli and Thomas Sauer, On vector subdivision, Math. Z. 229 (1998), no. 4, 621–674. MR 1664782, DOI 10.1007/PL00004676
- Gian-Carlo Rota and Gilbert Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379–381. Nederl. Akad. Wetensch. Proc. Ser. A 63. MR 0147922, DOI 10.1016/S1385-7258(60)50046-1
- Yang Wang, Two-scale dilation equations and the mean spectral radius, Random Comput. Dynam. 4 (1996), no. 1, 49–72. MR 1376114
- Ding-Xuan Zhou, The $p$-norm joint spectral radius for even integers, Methods Appl. Anal. 5 (1998), no. 1, 39–54. MR 1631335, DOI 10.4310/MAA.1998.v5.n1.a2
- Ding-Xuan Zhou, Spectra of subdivision operators, Proc. Amer. Math. Soc. 129 (2001), no. 1, 191–202. MR 1784023, DOI 10.1090/S0002-9939-00-05727-0
Bibliographic Information
- Di-Rong Chen
- Affiliation: Department of Applied Mathematics, Beijing University of Aeronautics, Astronautics, Beijing 100083, China; Department of Mathematics, Hubei Institute for Nationalities, Enshi 445000, Hubei, China
- Email: drchen@buaa.edu.cn
- Received by editor(s): February 21, 2001
- Received by editor(s) in revised form: December 12, 2002
- Published electronically: October 9, 2003
- Additional Notes: Supported in part by NSF of China under Grant 10171007 and City University of Hong Kong under Grant 7001442
- Communicated by: David R. Larson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1113-1123
- MSC (2000): Primary 42C15, 47B06
- DOI: https://doi.org/10.1090/S0002-9939-03-07194-6
- MathSciNet review: 2045428