## Purely periodic $\beta$-expansions with Pisot unit base

HTML articles powered by AMS MathViewer

- by Shunji Ito and Hui Rao PDF
- Proc. Amer. Math. Soc.
**133**(2005), 953-964 Request permission

## Abstract:

Let $\beta >1$ be a Pisot unit. A family of sets $\{X_i\}_{1\leq i\leq q}$ defined by a $\beta$-numeration system has been extensively studied as an atomic surface or Rauzy fractal. For the purpose of constructing a Markov partition, a domain $\hat X=\bigcup _{i=1}^q \hat X_i$ constructed by an atomic surface has appeared in several papers. In this paper we show that the domain $\hat X$ completely characterizes the set of purely periodic $\beta$-expansions.## References

- Roy L. Adler and Benjamin Weiss,
*Similarity of automorphisms of the torus*, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR**0257315** - Shigeki Akiyama,
*Pisot numbers and greedy algorithm*, Number theory (Eger, 1996) de Gruyter, Berlin, 1998, pp.Â 9â€“21. MR**1628829** - Shigeki Akiyama,
*Self affine tiling and Pisot numeration system*, Number theory and its applications (Kyoto, 1997) Dev. Math., vol. 2, Kluwer Acad. Publ., Dordrecht, 1999, pp.Â 7â€“17. MR**1738803** - Shigeki Akiyama,
*On the boundary of self affine tilings generated by Pisot numbers*, J. Math. Soc. Japan**54**(2002), no.Â 2, 283â€“308. MR**1883519**, DOI 10.2969/jmsj/05420283 - Shigeki Akiyama, Hui Rao, and Wolfgang Steiner,
*A certain finiteness property of Pisot number systems*, J. Number Theory**107**(2004), no.Â 1, 135â€“160. MR**2059954**, DOI 10.1016/j.jnt.2004.02.001 - Pierre Arnoux and Shunji Ito,
*Pisot substitutions and Rauzy fractals*, Bull. Belg. Math. Soc. Simon Stevin**8**(2001), no.Â 2, 181â€“207 (English, with English and French summaries). JournĂ©es Montoises dâ€™Informatique ThĂ©orique (Marne-la-VallĂ©e, 2000). MR**1838930** - Vincent Canterini and Anne Siegel,
*Geometric representation of substitutions of Pisot type*, Trans. Amer. Math. Soc.**353**(2001), no.Â 12, 5121â€“5144. MR**1852097**, DOI 10.1090/S0002-9947-01-02797-0 - H. Ei, S. Ito and H. Rao, Atomic surfaces, tilings and coincidence II: Reducible case. preprint 2002.
- Christiane Frougny and Boris Solomyak,
*Finite beta-expansions*, Ergodic Theory Dynam. Systems**12**(1992), no.Â 4, 713â€“723. MR**1200339**, DOI 10.1017/S0143385700007057 - Yuko Hara and Shunji Ito,
*On real quadratic fields and periodic expansions*, Tokyo J. Math.**12**(1989), no.Â 2, 357â€“370. MR**1030499**, DOI 10.3836/tjm/1270133185 - S. Ito and H. Rao, Atomic surfaces, tilings and coincidence I: Irreducible case. preprint 2001.
- Shunji Ito and Yuki Sano,
*On periodic $\beta$-expansions of Pisot numbers and Rauzy fractals*, Osaka J. Math.**38**(2001), no.Â 2, 349â€“368. MR**1833625** - Shunji Ito and Y\B{o}ichir\B{o} Takahashi,
*Markov subshifts and realization of $\beta$-expansions*, J. Math. Soc. Japan**26**(1974), 33â€“55. MR**346134**, DOI 10.2969/jmsj/02610033 - W. Parry,
*On the $\beta$-expansions of real numbers*, Acta Math. Acad. Sci. Hungar.**11**(1960), 401â€“416 (English, with Russian summary). MR**142719**, DOI 10.1007/BF02020954 - B. Praggastis, Markov partition for hyperbolic toral automorphism, Ph.D. Thesis, Univ. of Washington, 1992.
- G. Rauzy,
*Nombres algĂ©briques et substitutions*, Bull. Soc. Math. France**110**(1982), no.Â 2, 147â€“178 (French, with English summary). MR**667748**, DOI 10.24033/bsmf.1957 - Klaus Schmidt,
*On periodic expansions of Pisot numbers and Salem numbers*, Bull. London Math. Soc.**12**(1980), no.Â 4, 269â€“278. MR**576976**, DOI 10.1112/blms/12.4.269 - A. Siegel, ReprĂ©sentations gĂ©omĂ©triques, combinatoire et arithmĂ©tique des systĂ¨mes substitutifs de type Pisot, ThĂ¨sis de Doctorat, UniversitĂ© de la MĂ©ditĂ©rranĂ©e, 2000.
- VĂctor F. Sirvent and Yang Wang,
*Self-affine tiling via substitution dynamical systems and Rauzy fractals*, Pacific J. Math.**206**(2002), no.Â 2, 465â€“485. MR**1926787**, DOI 10.2140/pjm.2002.206.465 - W. Thurston, Groups, tilings, and finite state automata,
*AMS Colloquium Lecture Notes,*Boulder, 1989.

## Additional Information

**Shunji Ito**- Affiliation: Department of Information and Systems Engineering, Kanazawa University, Kanazawa, Japan
- Email: ito@t.kanazawa-u.ac.jp
**Hui Rao**- Affiliation: Department of Mathematics, Tsinghua University, Beijing, Peopleâ€™s Republic of China
- Email: hrao@math.tsinghua.edu.cn
- Received by editor(s): May 28, 2003
- Published electronically: November 19, 2004
- Additional Notes: The second author was supported by the Japanese Science Promotion Society (JSPS)
- Communicated by: David E. Rohrlich
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**133**(2005), 953-964 - MSC (2000): Primary 11R06; Secondary 37B50
- DOI: https://doi.org/10.1090/S0002-9939-04-07794-9
- MathSciNet review: 2117194