Gateaux derivative of $B(H)$ norm
Author:
Dragoljub J. Kečkic̀
Journal:
Proc. Amer. Math. Soc. 133 (2005), 2061-2067
MSC (2000):
Primary 46G05, 47L05; Secondary 47A30
DOI:
https://doi.org/10.1090/S0002-9939-05-07746-4
Published electronically:
January 25, 2005
MathSciNet review:
2137872
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that for Hilbert space operators $X$ and $Y$, it follows that \[ \lim _{t\to 0^+}\frac {||X+tY||-||X||}t=\frac 1{||X||} \inf _{\varepsilon >0}\sup _{\varphi \in H_\varepsilon ,||\varphi ||=1} \operatorname {Re}\left <Y\varphi ,X\varphi \right >,\] where $H_\varepsilon =E_{X^*X}((||X||-\varepsilon )^2,||X||^2)$. Using the concept of $\varphi$-Gateaux derivative, we apply this result to characterize orthogonality in the sense of James in $B(H)$, and to give an easy proof of the characterization of smooth points in $B(H)$.
- Theagenis J. Abatzoglou, Norm derivatives on spaces of operators, Math. Ann. 239 (1979), no. 2, 129–135. MR 519008, DOI https://doi.org/10.1007/BF01420370
- Rajendra Bhatia and Peter Šemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl. 287 (1999), no. 1-3, 77–85. Special issue celebrating the 60th birthday of Ludwig Elsner. MR 1662861, DOI https://doi.org/10.1016/S0024-3795%2898%2910134-9
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Robert C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265–292. MR 21241, DOI https://doi.org/10.1090/S0002-9947-1947-0021241-4
- Dragoljub J. Kečkić, Orthogonality in ${\mathfrak S}_1$ and ${\mathfrak S}_\infty $ spaces and normal derivations, J. Operator Theory 51 (2004), no. 1, 89–104. MR 2055806
- P. J. Maher, Commutator approximants, Proc. Amer. Math. Soc. 115 (1992), no. 4, 995–1000. MR 1086335, DOI https://doi.org/10.1090/S0002-9939-1992-1086335-6
- Salah Mecheri and Messaoud Bounkhel, Global minimum and orthogonality in $C_1$-classes, J. Math. Anal. Appl. 287 (2003), no. 1, 51–60. MR 2010256, DOI https://doi.org/10.1016/S0022-247X%2803%2900480-3
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46G05, 47L05, 47A30
Retrieve articles in all journals with MSC (2000): 46G05, 47L05, 47A30
Additional Information
Dragoljub J. Kečkic̀
Affiliation:
Faculty of Mathematics, University of Belgrade, Studentski trg 16–18, 11000 Beograd, Serbia & Montenegro
Email:
keckic@matf.bg.ac.yu, keckic@EUnet.yu
Keywords:
Gateaux derivative,
orthogonality,
smoothness
Received by editor(s):
February 3, 2004
Received by editor(s) in revised form:
March 7, 2004
Published electronically:
January 25, 2005
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.