Quasi-hyperbolic planes in hyperbolic groups
HTML articles powered by AMS MathViewer
- by Mario Bonk and Bruce Kleiner
- Proc. Amer. Math. Soc. 133 (2005), 2491-2494
- DOI: https://doi.org/10.1090/S0002-9939-05-07564-7
- Published electronically: April 12, 2005
- PDF | Request permission
Abstract:
The hyperbolic plane $\mathbb {H}^2$ admits a quasi-isometric embedding into every hyperbolic group which is not virtually free.References
- Patrice Assouad, Plongements lipschitziens dans $\textbf {R}^{n}$, Bull. Soc. Math. France 111 (1983), no. 4, 429–448 (French, with English summary). MR 763553
- Mladen Bestvina and Geoffrey Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), no. 3, 469–481. MR 1096169, DOI 10.1090/S0894-0347-1991-1096169-1
- Mario Bonk and Bruce Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), no. 1, 81–106. MR 1949785
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3673–3686. MR 1624089, DOI 10.1090/S0002-9947-99-02388-0
- B. H. Bowditch, Boundaries of strongly accessible hyperbolic groups, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 51–97. MR 1668331, DOI 10.2140/gtm.1998.1.51
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- D. J. Collins and H. Zieschang, Combinatorial group theory and fundamental groups, Algebra, VII, Encyclopaedia Math. Sci., vol. 58, Springer, Berlin, 1993, pp. 1–166, 233–240. MR 1265270
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Ilya Kapovich, Quasiconvexity and amalgams, Internat. J. Algebra Comput. 7 (1997), no. 6, 771–811. MR 1482968, DOI 10.1142/S0218196797000344
- Frédéric Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2) 54 (1996), no. 1, 50–74 (French, with French summary). MR 1395067, DOI 10.1112/jlms/54.1.50
- G. A. Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), no. 2, 98–100. MR 1412948, DOI 10.1090/S1079-6762-96-00013-3
- Pekka Tukia, Spaces and arcs of bounded turning, Michigan Math. J. 43 (1996), no. 3, 559–584. MR 1420592, DOI 10.1307/mmj/1029005543
Bibliographic Information
- Mario Bonk
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- MR Author ID: 39235
- Email: mbonk@umich.edu
- Bruce Kleiner
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Email: bkleiner@umich.edu
- Received by editor(s): January 21, 2003
- Published electronically: April 12, 2005
- Additional Notes: The first author was supported by NSF grant DMS-0200566.
The second author was supported by NSF grants DMS-9972047 and DMS-0204506. - Communicated by: Ronald A. Fintushel
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2491-2494
- MSC (2000): Primary 20F67
- DOI: https://doi.org/10.1090/S0002-9939-05-07564-7
- MathSciNet review: 2146190