On mixing and completely mixing properties of positive $L^1$-contractions of finite von Neumann algebras
HTML articles powered by AMS MathViewer
- by Farruh Mukhamedov, Seyit Temir and Hasan Akin
- Proc. Amer. Math. Soc. 134 (2006), 843-850
- DOI: https://doi.org/10.1090/S0002-9939-05-08072-X
- Published electronically: July 20, 2005
- PDF | Request permission
Abstract:
Akcoglu and Suchaston proved the following result: Let $T: L^1(X,{\mathcal F},\mu )\to L^1(X,{\mathcal F},\mu )$ be a positive contraction. Assume that for $z\in L^1(X,{\mathcal F},\mu )$ the sequence $(T^nz)$ converges weakly in $L^1(X,{\mathcal F},\mu )$. Then either $\lim \limits _{n\to \infty }\|T^nz\|=0$ or there exists a positive function $h\in L^1(X,{\mathcal F},\mu )$, $h\neq 0$ such that $Th=h$. In the paper we prove an extension of this result in a finite von Neumann algebra setting, and as a consequence we obtain that if a positive contraction of a noncommutative $L^1$-space has no nonzero positive invariant element, then its mixing property implies the completely mixing property.References
- M. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar. 2 (1972), 235–244. MR 326433, DOI 10.1007/BF02018664
- Sergio Albeverio and Raphael Høegh-Krohn, Frobenius theory for positive maps of von Neumann algebras, Comm. Math. Phys. 64 (1978/79), no. 1, 83–94. MR 516998, DOI 10.1007/BF01940763
- William Arveson and Geoffrey Price, Infinite tensor products of completely positive semigroups, J. Evol. Equ. 1 (2001), no. 2, 221–242. MR 1846747, DOI 10.1007/PL00001369
- D. Berend, M. Lin, J. Rosenblatt, and A. Tempelman, Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1653–1665. MR 1944398, DOI 10.1017/S0143385702000846
- V. Bergelson, I. Kornfeld, A. Leibman, and B. Mityagin, A Krengel-type theorem for finitely-generated nilpotent groups, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1359–1369. MR 1855836, DOI 10.1017/S014338570100164X
- J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1960), 308–311. MR 118803, DOI 10.1090/S0002-9904-1960-10481-8
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. Vol. 1, Texts and Monographs in Physics, Springer-Verlag, New York-Heidelberg, 1979. $C^{\ast }$- and $W^{\ast }$-algebras, algebras, symmetry groups, decomposition of states. MR 545651, DOI 10.1007/978-3-662-02313-6
- Eduard Yu. Emel′yanov, Invariant densities and mean ergodicity of Markov operators, Israel J. Math. 136 (2003), 373–379. MR 1998118, DOI 10.1007/BF02807206
- Franco Fagnola and Rolando Rebolledo, On the existence of stationary states for quantum dynamical semigroups, J. Math. Phys. 42 (2001), no. 3, 1296–1308. MR 1814690, DOI 10.1063/1.1340870
- Franco Fagnola and Rolando Rebolledo, Transience and recurrence of quantum Markov semigroups, Probab. Theory Related Fields 126 (2003), no. 2, 289–306. MR 1990058, DOI 10.1007/s00440-003-0268-0
- H. Fong and L. Sucheston, On a mixing property of operators in $L_{p}$ spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 165–171. MR 367152, DOI 10.1007/BF00533366
- Alberto Frigerio, Stationary states of quantum dynamical semigroups, Comm. Math. Phys. 63 (1978), no. 3, 269–276. MR 522826, DOI 10.1007/BF01196936
- Ryszard Jajte, Strong limit theorems in noncommutative probability, Lecture Notes in Mathematics, vol. 1110, Springer-Verlag, Berlin, 1985. MR 778724, DOI 10.1007/BFb0101453
- Ryszard Jajte, On the existence of invariant states in $W^\ast$-algebras, Bull. Polish Acad. Sci. Math. 34 (1986), no. 9-10, 617–624 (1987) (English, with Russian summary). MR 884210
- Tomasz Komorowski and Joanna Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), no. 1-6, 221–228 (1990) (English, with Russian summary). MR 1101473
- A. A. Katz, One property of the weak convergence of operators iterations in von Neumann algebras, Vladikavkaz. Mat. Zh. 5 (2003), no. 2, 34–35. MR 2065125
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- U. Krengel and L. Sucheston, On mixing in infinite measure spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 150–164. MR 254215, DOI 10.1007/BF00537021
- A. Łuczak, Quantum dynamical semigroups in strongly finite von Neumann algebras, Acta Math. Hungar. 92 (2001), no. 1-2, 11–17. MR 1924244, DOI 10.1023/A:1013791624973
- Edward Nelson, Notes on non-commutative integration, J. Functional Analysis 15 (1974), 103–116. MR 0355628, DOI 10.1016/0022-1236(74)90014-7
- M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), 229–241. MR 1983206, DOI 10.1016/S0024-3795(02)00673-0
- Zdzisław Suchanecki, An $L^1$ extension of stochastic dynamics for irreversible systems, Probability theory on vector spaces, IV (Łańcut, 1987) Lecture Notes in Math., vol. 1391, Springer, Berlin, 1989, pp. 367–374. MR 1020577, DOI 10.1007/BFb0083405
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
- F. J. Yeadon, Ergodic theorems for semifinite von Neumann algebras. I, J. London Math. Soc. (2) 16 (1977), no. 2, 326–332. MR 487482, DOI 10.1112/jlms/s2-16.2.326
- Radu Zaharopol and Gheorghita Zbaganu, Dobrushin coefficients of ergodicity and asymptotically stable $L^1$-contractions, J. Theoret. Probab. 12 (1999), no. 4, 885–902. MR 1729461, DOI 10.1023/A:1021684818286
Bibliographic Information
- Farruh Mukhamedov
- Affiliation: Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700095, Tashkent, Uzbekistan
- Email: far75m@yandex.ru
- Seyit Temir
- Affiliation: Department of Mathematics, Arts and Science Faculty, Harran University, 63200, Şanliurfa, Turkey
- Email: seyittemir67@hotmail.com
- Hasan Akin
- Affiliation: Department of Mathematics, Arts and Science Faculty, Harran University, 63200, Şanliurfa, Turkey
- MR Author ID: 734288
- ORCID: 0000-0001-6447-4035
- Email: hasanakin69@hotmail.com
- Received by editor(s): June 30, 2004
- Received by editor(s) in revised form: October 21, 2004
- Published electronically: July 20, 2005
- Additional Notes: This work was supported by NATO-TUBITAK PC-B programme
- Communicated by: David R. Larson
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 134 (2006), 843-850
- MSC (2000): Primary 47A35, 28D05
- DOI: https://doi.org/10.1090/S0002-9939-05-08072-X
- MathSciNet review: 2180902