Matrix coefficients and coadjoint orbits of compact Lie groups
HTML articles powered by AMS MathViewer
- by A. H. Dooley and R. W. Raffoul
- Proc. Amer. Math. Soc. 135 (2007), 2567-2571
- DOI: https://doi.org/10.1090/S0002-9939-07-08781-3
- Published electronically: March 22, 2007
- PDF | Request permission
Abstract:
Let $G$ be a compact Lie group. We use Weyl functional calculus (Anderson, 1969) and symplectic convexity theorems to determine the support and singular support of the operator-valued Fourier transform of the product of the $j$-function and the pull-back of an arbitrary unitary irreducible representation of $G$ to the Lie algebra, strengthening and generalizing the results of Cazzaniga, 1992. We obtain as a consequence a new demonstration of the Kirillov correspondence for compact Lie groups.References
- Robert F. V. Anderson, The Weyl functional calculus, J. Functional Analysis 4 (1969), 240–267. MR 0635128, DOI 10.1016/0022-1236(69)90013-5
- D. Arnal and J. Ludwig, La convexité de l’application moment d’un groupe de Lie, J. Funct. Anal. 105 (1992), no. 2, 256–300 (French, with English summary). MR 1160080, DOI 10.1016/0022-1236(92)90080-3
- V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295, DOI 10.1007/978-1-4757-2063-1
- F. Cazzaniga, Kirillov’s formula for noncentral functions on $\textrm {SU}(2)$, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), no. 3, 233–242 (1993). MR 1249464
- A. H. Dooley and N. J. Wildberger, Global character formulae for compact Lie groups, Trans. Amer. Math. Soc. 351 (1999), no. 2, 477–495. MR 1638234, DOI 10.1090/S0002-9947-99-02406-X
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping. II, Invent. Math. 77 (1984), no. 3, 533–546. MR 759258, DOI 10.1007/BF01388837
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 84104, DOI 10.2307/2372387
- Brian Jefferies, The Weyl calculus for Hermitian matrices, Proc. Amer. Math. Soc. 124 (1996), no. 1, 121–128. MR 1301032, DOI 10.1090/S0002-9939-96-03143-7
- Mohamed Salah Khalgui, Caractères des groupes de Lie, J. Functional Analysis 47 (1982), no. 1, 64–77 (French, with English summary). MR 663833, DOI 10.1016/0022-1236(82)90100-8
- A. A. Kirillov, Characters of unitary representations of Lie groups, Funkcional. Anal. i Priložen. 2 (1968), no. 2, 40–55 (Russian). MR 0236318
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552
- Jean Jacques Loeb, Formule de Kirillov pour les groupes de Lie semi-simples compacts, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–1975) Lecture Notes in Math., Vol. 497, Springer, Berlin, 1975, pp. 230–256 (French). MR 0407204
- Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, De Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000. MR 1740617, DOI 10.1515/9783110808148
- Edward Nelson, Operants: A functional calculus for non-commuting operators, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 172–187. MR 0412857
- L. Pukánszky, On the characters and the Plancherel formula of nilpotent groups, J. Functional Analysis 1 (1967), 255–280. MR 0228656, DOI 10.1016/0022-1236(67)90015-8
- Wulf Rossmann, Kirillov’s character formula for reductive Lie groups, Invent. Math. 48 (1978), no. 3, 207–220. MR 508985, DOI 10.1007/BF01390244
- Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1, 46–91. MR 1645052, DOI 10.1006/aima.1998.1739
- N. J. Wildberger, The moment map of a Lie group representation, Trans. Amer. Math. Soc. 330 (1992), no. 1, 257–268. MR 1040046, DOI 10.1090/S0002-9947-1992-1040046-6
Bibliographic Information
- A. H. Dooley
- Affiliation: School of Mathematics, University of New South Wales, Sydney NSW 2000, Australia
- Email: a.dooley@unsw.edu.au
- R. W. Raffoul
- Affiliation: School of Mathematics, University of New South Wales, Sydney NSW 2000, Australia
- Email: raed@maths.unsw.edu.au
- Received by editor(s): April 18, 2006
- Published electronically: March 22, 2007
- Additional Notes: The authors gratefully acknowledge the support of the Australian Research Council.
- Communicated by: Jane M. Hawkins
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2567-2571
- MSC (2000): Primary 43A77, 22E99; Secondary 47Nxx
- DOI: https://doi.org/10.1090/S0002-9939-07-08781-3
- MathSciNet review: 2302577