Turán type inequalities for hypergeometric functions
HTML articles powered by AMS MathViewer
- by Árpád Baricz
- Proc. Amer. Math. Soc. 136 (2008), 3223-3229
- DOI: https://doi.org/10.1090/S0002-9939-08-09353-2
- Published electronically: April 29, 2008
- PDF | Request permission
Abstract:
In this note our aim is to establish a Turán type inequality for Gaussian hypergeometric functions. This result completes the earlier result that G. Gasper proved for Jacobi polynomials. Moreover, at the end of this note we present some open problems.References
- Horst Alzer and Christian Berg, Some classes of completely monotonic functions. II, Ramanujan J. 11 (2006), no. 2, 225–248. MR 2267677, DOI 10.1007/s11139-006-6510-5
- Horst Alzer, Stefan Gerhold, Manuel Kauers, and Alexandru Lupaş, On Turán’s inequality for Legendre polynomials, Expo. Math. 25 (2007), no. 2, 181–186. MR 2319577, DOI 10.1016/j.exmath.2006.11.001
- G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, and M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math. 192 (2000), no. 1, 1–37. MR 1741031, DOI 10.2140/pjm.2000.192.1
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Árpád Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z. 256 (2007), no. 4, 895–911. MR 2308896, DOI 10.1007/s00209-007-0111-x
- Á. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math. (2008), doi:10.1016/j.exmath.2008.01.001.
- Christian Berg and Gunnar Forst, Potential theory on locally compact abelian groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 87, Springer-Verlag, New York-Heidelberg, 1975. MR 0481057, DOI 10.1007/978-3-642-66128-0
- Joaquin Bustoz and Mourad E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659–667. MR 856710, DOI 10.1090/S0025-5718-1986-0856710-6
- George Csordas and Jack Williamson, On polynomials satisfying a Turán type inequality, Proc. Amer. Math. Soc. 43 (1974), 367–372. MR 338487, DOI 10.1090/S0002-9939-1974-0338487-X
- George Gasper, On the extension of Turán’s inequality to Jacobi polynomials, Duke Math. J. 38 (1971), 415–428. MR 276514
- George Gasper, An inequality of Turán type for Jacobi polynomials, Proc. Amer. Math. Soc. 32 (1972), 435–439. MR 289826, DOI 10.1090/S0002-9939-1972-0289826-8
- V. Heikkala, M.K. Vamanamurthy and M. Vuorinen, Generalized elliptic integrals, Comput. Methods Funct. Theory 9 (1) (2009), 75–109.
- C. M. Joshi and S. K. Bissu, Some inequalities of Bessel and modified Bessel functions, J. Austral. Math. Soc. Ser. A 50 (1991), no. 2, 333–342. MR 1094928, DOI 10.1017/S1446788700032791
- S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, J. Analyse Math. 8 (1960/61), 1–157. MR 142972, DOI 10.1007/BF02786848
- Otto Szász, Inequalities concerning ultraspherical polynomials and Bessel functions, Proc. Amer. Math. Soc. 1 (1950), 256–267. MR 34902, DOI 10.1090/S0002-9939-1950-0034902-3
- G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401–405. MR 23954, DOI 10.1090/S0002-9904-1948-09017-6
- Gabor Szegő, An inequality for Jacobi polynomials, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 392–398. MR 0145122
- V. R. Thiruvenkatachar and T. S. Nanjundiah, Inequalities concerning Bessel functions and orthogonal polynomials, Proc. Indian Acad. Sci., Sect. A. 33 (1951), 373–384. MR 0048635, DOI 10.1007/BF03178130
- Paul Turán, On the zeros of the polynomials of Legendre, Časopis Pěst. Mat. Fys. 75 (1950), 113–122 (English, with Czech summary). MR 0041284, DOI 10.21136/CPMF.1950.123879
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- Árpád Baricz
- Affiliation: Faculty of Economics, Babeş-Bolyai University, RO-400591 Cluj-Napoca, Romania
- MR Author ID: 729952
- Email: bariczocsi@yahoo.com
- Received by editor(s): July 23, 2007
- Published electronically: April 29, 2008
- Communicated by: Carmen C. Chicone
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3223-3229
- MSC (2000): Primary 33C05; Secondary 26D07
- DOI: https://doi.org/10.1090/S0002-9939-08-09353-2
- MathSciNet review: 2407087
Dedicated: Dedicated to the memory of Professor Alexandru Lupaş