Cyclotomic units in function fields
Authors:
Sunghan Bae and Linsheng Yin
Journal:
Proc. Amer. Math. Soc. 137 (2009), 401-408
MSC (2000):
Primary 11R58
DOI:
https://doi.org/10.1090/S0002-9939-08-09587-7
Published electronically:
October 3, 2008
MathSciNet review:
2448557
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $k$ be a global function field over the finite field $\mathbb {F}_{q}$ with a fixed place $\infty$ of degree 1. Let $K$ be a cyclic extension of degree dividing $q-1$, in which $\infty$ is totally ramified. For a certain abelian extension $L$ of $k$ containing $K$, there are two notions of the group of cyclotomic units arising from sign normalized rank 1 Drinfeld modules on $k$ and on $K$. In this article we compare these two groups of cyclotomic units.
- Jaehyun Ahn, Sunghan Bae, and Hwanyup Jung, Cyclotomic units and Stickelberger ideals of global function fields, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1803–1818. MR 1953526, DOI https://doi.org/10.1090/S0002-9947-03-03245-8
- Roland Gillard, Unités elliptiques et unités cyclotomiques, Math. Ann. 243 (1979), no. 2, 181–189 (French). MR 543728, DOI https://doi.org/10.1007/BF01420425
- Benedict Gross and Michael Rosen, Fourier series and the special values of $L$-functions, Adv. in Math. 69 (1988), no. 1, 1–31. MR 937316, DOI https://doi.org/10.1016/0001-8708%2888%2990059-X
- David R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), no. 2, 209–239. MR 795715
- David R. Hayes, Elliptic units in function fields, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 321–340. MR 685307
- Donald Kersey, Modular units inside cyclotomic units, Ann. of Math. (2) 112 (1980), no. 2, 361–380. MR 592295, DOI https://doi.org/10.2307/1971150
- Oukhaba, H., Fonctions discriminant, formules pour le nombre de classes, et unités elliptiques; Le cas des corps de fonctions (associé à des courbes sur des corps finis), Thèse, Institut Fourier, Grenoble, 1991.
- Shu, L., Narrow ray class fields and partial zeta functions, preprint, unpublished.
- Linsheng Yin, Index-class number formulas over global function fields, Compositio Math. 109 (1997), no. 1, 49–66. MR 1473605, DOI https://doi.org/10.1023/A%3A1000131711974
- Linsheng Yin, Stickelberger ideals and relative class numbers in function fields, J. Number Theory 81 (2000), no. 1, 162–169. MR 1743498, DOI https://doi.org/10.1006/jnth.1999.2472
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R58
Retrieve articles in all journals with MSC (2000): 11R58
Additional Information
Sunghan Bae
Affiliation:
Department of Mathematics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
Email:
shbae@math.kaist.ac.kr
Linsheng Yin
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
Email:
lsyin@math.tsinghua.edu.cn
Received by editor(s):
February 16, 2007
Published electronically:
October 3, 2008
Additional Notes:
The first author was supported by KOSEF research grants R01-2006-000-10320-0, F01-2006-000-10040-0 and SRC program (ASARC R11-2007-035-01001-0)
The second author was supported by NSFC (No. 10571097).
Communicated by:
Wen-Ching Winnie Li
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.