## The Erdos-Kac theorem for polynomials of several variables

HTML articles powered by AMS MathViewer

- by Maosheng Xiong PDF
- Proc. Amer. Math. Soc.
**137**(2009), 2601-2608 Request permission

## Abstract:

We prove two versions of the Erdős-Kac type theorem for polynomials of several variables on some varieties arising from translation and affine linear transformation.## References

- Krishnaswami Alladi,
*An Erdős-Kac theorem for integers without large prime factors*, Acta Arith.**49**(1987), no. 1, 81–105. MR**913766**, DOI 10.4064/aa-49-1-81-105 - Jean Bourgain and Alex Gamburd,
*Uniform expansion bounds for Cayley graphs of $\textrm {SL}_2(\Bbb F_p)$*, Ann. of Math. (2)**167**(2008), no. 2, 625–642. MR**2415383**, DOI 10.4007/annals.2008.167.625 - J. Bourgain, A. Gamburd, P. Sarnak,
*Sieving, expanders, and sum-product*, preprint. - Antonio Cafure and Guillermo Matera,
*Improved explicit estimates on the number of solutions of equations over a finite field*, Finite Fields Appl.**12**(2006), no. 2, 155–185. MR**2206396**, DOI 10.1016/j.ffa.2005.03.003 - N. G. Chebotarev,
*Opredelenie plotnosti sovokupnosti prostykh chisel, prinadlezhashchikh zadannomu klassu podstanovok*, Izv. Ross. Akad. Nauk.**17**(1923), 205-250. - P. D. T. A. Elliott,
*Probabilistic number theory. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR**551361** - P. Erdös and M. Kac,
*The Gaussian law of errors in the theory of additive number theoretic functions*, Amer. J. Math.**62**(1940), 738–742. MR**2374**, DOI 10.2307/2371483 - Andrew Granville and K. Soundararajan,
*Sieving and the Erdős-Kac theorem*, Equidistribution in number theory, an introduction, NATO Sci. Ser. II Math. Phys. Chem., vol. 237, Springer, Dordrecht, 2007, pp. 15–27. MR**2290492**, DOI 10.1007/978-1-4020-5404-4_{2} - H. Halberstam,
*On the distribution of additive number-theoretic functions. II*, J. London Math. Soc.**31**(1956), 1–14. MR**73626**, DOI 10.1112/jlms/s1-31.1.1 - G. H. Hardy and S. Ramanujan,
*The normal number of prime factors of a number $n$*, Quart. J. Pure Appl. Math.**48**(1917), 76–97. - Hsien-Kuei Hwang,
*On convergence rates in the central limit theorems for combinatorial structures*, European J. Combin.**19**(1998), no. 3, 329–343. MR**1621021**, DOI 10.1006/eujc.1997.0179 - Serge Lang and André Weil,
*Number of points of varieties in finite fields*, Amer. J. Math.**76**(1954), 819–827. MR**65218**, DOI 10.2307/2372655 - Yu-Ru Liu,
*Prime divisors of the number of rational points on elliptic curves with complex multiplication*, Bull. London Math. Soc.**37**(2005), no. 5, 658–664. MR**2164827**, DOI 10.1112/S0024609305004558 - Yu-Ru Liu,
*A generalization of the Turán theorem and its applications*, Canad. Math. Bull.**47**(2004), no. 4, 573–588. MR**2099755**, DOI 10.4153/CMB-2004-056-7 - Yu-Ru Liu,
*Prime analogues of the Erdős-Kac theorem for elliptic curves*, J. Number Theory**119**(2006), no. 2, 155–170. MR**2250042**, DOI 10.1016/j.jnt.2005.10.014 - M. Ram Murty and V. Kumar Murty,
*An analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms*, Indian J. Pure Appl. Math.**15**(1984), no. 10, 1090–1101. MR**765015** - M. Ram Murty and Filip Saidak,
*Non-abelian generalizations of the Erdős-Kac theorem*, Canad. J. Math.**56**(2004), no. 2, 356–372. MR**2040920**, DOI 10.4153/CJM-2004-017-7 - Emmy Noether,
*Ein algebraisches Kriterium für absolute Irreduzibilität*, Math. Ann.**85**(1922), no. 1, 26–40 (German). MR**1512042**, DOI 10.1007/BF01449599 - Filip Saidak,
*New Erdős-Kac type theorems*, Arch. Math. (Basel)**85**(2005), no. 4, 345–361. MR**2174232**, DOI 10.1007/s00013-005-1341-y - Jörg M. Thuswaldner and Robert F. Tichy,
*An Erdős-Kac theorem for systems of $q$-additive functions*, Indag. Math. (N.S.)**11**(2000), no. 2, 283–291. MR**1813728**, DOI 10.1016/S0019-3577(00)89084-9 - P. Turán,
*On a theorem of Hardy and Ramanujan*, J. London Math. Soc.**9**(1934), 274–276.

## Additional Information

**Maosheng Xiong**- Affiliation: Department of Mathematics, Eberly College of Science, Pennsylvania State University, McAllister Building, University Park, Pennsylvania 16802
- Email: xiong@math.psu.edu
- Received by editor(s): March 20, 2008
- Received by editor(s) in revised form: October 31, 2008
- Published electronically: February 11, 2009
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 2601-2608 - MSC (2000): Primary 11N64, 11R09
- DOI: https://doi.org/10.1090/S0002-9939-09-09830-X
- MathSciNet review: 2497471