## On the weaker forms of the specification property and their applications

HTML articles powered by AMS MathViewer

- by Kenichiro Yamamoto PDF
- Proc. Amer. Math. Soc.
**137**(2009), 3807-3814 Request permission

## Abstract:

We show the following two results, which are derived from the weaker forms of the specification property: Firstly, if an automorphism of a compact metric abelian group with finite topological entropy is ergodic under the Haar measure, then it satisfies the level 2 large deviation principle. Secondly, the topological pressure formula for periodic orbits is given under the expansiveness and the almost product property.## References

- Nobuo Aoki,
*Zero-dimensional automorphisms with specification*, Monatsh. Math.**95**(1983), no. 1, 1–17. MR**697344**, DOI 10.1007/BF01301143 - N. Aoki, M. Dateyama, and M. Komuro,
*Solenoidal automorphisms with specifications*, Monatsh. Math.**93**(1982), no. 2, 79–110. MR**653100**, DOI 10.1007/BF01301397 - Viviane Baladi,
*Positive transfer operators and decay of correlations*, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR**1793194**, DOI 10.1142/9789812813633 - Rufus Bowen,
*Some systems with unique equilibrium states*, Math. Systems Theory**8**(1974/75), no. 3, 193–202. MR**399413**, DOI 10.1007/BF01762666 - Jérôme Buzzi,
*Specification on the interval*, Trans. Amer. Math. Soc.**349**(1997), no. 7, 2737–2754. MR**1407484**, DOI 10.1090/S0002-9947-97-01873-4 - Yong Moo Chung and Michihiro Hirayama,
*Topological entropy and periodic orbits of saddle type for surface diffeomorphisms*, Hiroshima Math. J.**33**(2003), no. 2, 189–195. MR**1997693** - Masahito Dateyama,
*The almost weak specification property for ergodic group automorphisms of abelian groups*, J. Math. Soc. Japan**42**(1990), no. 2, 341–351. MR**1041229**, DOI 10.2969/jmsj/04220341 - Manfred Denker, Christian Grillenberger, and Karl Sigmund,
*Ergodic theory on compact spaces*, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR**0457675** - Richard S. Ellis,
*Entropy, large deviations, and statistical mechanics*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 271, Springer-Verlag, New York, 1985. MR**793553**, DOI 10.1007/978-1-4613-8533-2 - Katrin Gelfert and Christian Wolf,
*Topological pressure via saddle points*, Trans. Amer. Math. Soc.**360**(2008), no. 1, 545–561. MR**2342015**, DOI 10.1090/S0002-9947-07-04407-8 - Lianfa He, Hong Li, and Winxiang Sun,
*Invariant of topological pressure under some semi-conjugates*, Appl. Math. J. Chinese Univ. Ser. B**12**(1997), no. 3, 355–362. A Chinese summary appears in Gaoxiao Yingyong Shuxue Xuebao Ser. A 12 (1997), no. 3, 378. MR**1482923**, DOI 10.1007/s11766-997-0036-5 - D. A. Lind,
*Ergodic group automorphisms and specification*, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 93–104. MR**550414** - Brian Marcus,
*A note on periodic points for ergodic toral automorphisms*, Monatsh. Math.**89**(1980), no. 2, 121–129. MR**572888**, DOI 10.1007/BF01476590 - MichałMisiurewicz,
*Topological conditional entropy*, Studia Math.**55**(1976), no. 2, 175–200. MR**415587**, DOI 10.4064/sm-55-2-175-200 - C.-E. Pfister and W. G. Sullivan,
*Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta$-shifts*, Nonlinearity**18**(2005), no. 1, 237–261. MR**2109476**, DOI 10.1088/0951-7715/18/1/013 - C.-E. Pfister and W. G. Sullivan,
*On the topological entropy of saturated sets*, Ergodic Theory Dynam. Systems**27**(2007), no. 3, 929–956. MR**2322186**, DOI 10.1017/S0143385706000824 - Jörg Schmeling,
*Symbolic dynamics for $\beta$-shifts and self-normal numbers*, Ergodic Theory Dynam. Systems**17**(1997), no. 3, 675–694. MR**1452189**, DOI 10.1017/S0143385797079182 - Peter Walters,
*An introduction to ergodic theory*, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR**648108**

## Additional Information

**Kenichiro Yamamoto**- Affiliation: Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
- MR Author ID: 878580
- Email: yamamoto.k.ak@m.titech.ac.jp
- Received by editor(s): December 25, 2008
- Received by editor(s) in revised form: February 23, 2009
- Published electronically: June 10, 2009
- Communicated by: Jane M. Hawkins
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 3807-3814 - MSC (2000): Primary 37B40; Secondary 60F10
- DOI: https://doi.org/10.1090/S0002-9939-09-09937-7
- MathSciNet review: 2529890