## Hypergeometric $\mathbf {{}_3\textit {F}_2(1/4)}$ evaluations over finite fields and Hecke eigenforms

HTML articles powered by AMS MathViewer

- by Ron Evans
- Proc. Amer. Math. Soc.
**138**(2010), 517-531 - DOI: https://doi.org/10.1090/S0002-9939-09-10091-6
- Published electronically: September 16, 2009
- PDF | Request permission

## Abstract:

Let $H$ denote the hypergeometric ${}_3F_2$ function over $\mathbb {F}_p$ whose three numerator parameters are quadratic characters and whose two denominator parameters are trivial characters. In 1992, Koike posed the problem of evaluating $H$ at the argument $1/4$. This problem was solved by Ono in 1998. Ten years later, Evans and Greene extended Ono’s result by evaluating an infinite family of ${}_3F_2(1/4)$ over $\mathbb {F}_q$ in terms of Jacobi sums. Here we present five new ${}_3F_2(1/4)$ over $\mathbb {F}_q$ (involving characters of orders 3, 4, 6, and 8) which are conjecturally evaluable in terms of eigenvalues for Hecke eigenforms of weights 2 and 3. There is ample numerical evidence for these evaluations. We motivate our conjectures by proving a connection between ${}_3F_2(1/4)$ and twisted sums of traces of the third symmetric power of twisted Kloosterman sheaves.## References

- Scott Ahlgren and Ken Ono,
*Modularity of a certain Calabi-Yau threefold*, Monatsh. Math.**129**(2000), no. 3, 177–190. MR**1746757**, DOI 10.1007/s006050050069 - Scott Ahlgren and Ken Ono,
*A Gaussian hypergeometric series evaluation and Apéry number congruences*, J. Reine Angew. Math.**518**(2000), 187–212. MR**1739404**, DOI 10.1515/crll.2000.004 - Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams,
*Gauss and Jacobi sums*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR**1625181** - Pierre Deligne,
*La conjecture de Weil. II*, Inst. Hautes Études Sci. Publ. Math.**52**(1980), 137–252 (French). MR**601520** - R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math., to appear.
- Ron Evans and John Greene,
*Clausen’s theorem and hypergeometric functions over finite fields*, Finite Fields Appl.**15**(2009), no. 1, 97–109. MR**2468995**, DOI 10.1016/j.ffa.2008.09.001 - R. J. Evans, J. Greene, Evaluations of hypergeometric functions over finite fields, Hiroshima Math. J. 39 (2009), 217–235.
- R. J. Evans, F. Lam, Special values of hypergeometric functions over finite fields, Ramanujan J. 19 (2009), 151–162.
- Sharon Frechette, Ken Ono, and Matthew Papanikolas,
*Gaussian hypergeometric functions and traces of Hecke operators*, Int. Math. Res. Not.**60**(2004), 3233–3262. MR**2096220**, DOI 10.1155/S1073792804132522 - Lei Fu and Daqing Wan,
*$L$-functions for symmetric products of Kloosterman sums*, J. Reine Angew. Math.**589**(2005), 79–103. MR**2194679**, DOI 10.1515/crll.2005.2005.589.79 - Lei Fu and Daqing Wan,
*Trivial factors for $L$-functions of symmetric products of Kloosterman sheaves*, Finite Fields Appl.**14**(2008), no. 2, 549–570. MR**2401995**, DOI 10.1016/j.ffa.2007.07.005 - Lei Fu and Daqing Wan,
*$L$-functions of symmetric products of the Kloosterman sheaf over $\textbf {Z}$*, Math. Ann.**342**(2008), no. 2, 387–404. MR**2425148**, DOI 10.1007/s00208-008-0240-5 - L. Fu, D. Wan, Functional equations of $L$-functions for symmetric products of the Kloosterman sheaf, preprint.
- J. Fuselier, Hypergeometric functions over finite fields and relations to modular forms and elliptic curves, Ph.D. thesis, Texas A&M University, 2007.
- John Greene,
*Hypergeometric functions over finite fields*, Trans. Amer. Math. Soc.**301**(1987), no. 1, 77–101. MR**879564**, DOI 10.1090/S0002-9947-1987-0879564-8 - K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten,
*The modularity of the Barth-Nieto quintic and its relatives*, Adv. Geom.**1**(2001), no. 3, 263–289. MR**1874236**, DOI 10.1515/advg.2001.017 - Henryk Iwaniec,
*Topics in classical automorphic forms*, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR**1474964**, DOI 10.1090/gsm/017 - Nicholas M. Katz,
*Gauss sums, Kloosterman sums, and monodromy groups*, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR**955052**, DOI 10.1515/9781400882120 - N. Katz, email communication, December 2005.
- Masao Koike,
*Hypergeometric series over finite fields and Apéry numbers*, Hiroshima Math. J.**22**(1992), no. 3, 461–467. MR**1194045** - D. H. Lehmer and Emma Lehmer,
*On the cubes of Kloosterman sums*, Acta Arith.**6**(1960), 15–22. MR**115976**, DOI 10.4064/aa-6-1-15-22 - Chunlei Liu,
*Twisted higher moments of Kloosterman sums*, Proc. Amer. Math. Soc.**130**(2002), no. 7, 1887–1892. MR**1896019**, DOI 10.1090/S0002-9939-02-06510-3 - Ron Livné,
*Motivic orthogonal two-dimensional representations of $\textrm {Gal}(\overline \textbf {Q}/\mathbf Q)$*, Israel J. Math.**92**(1995), no. 1-3, 149–156. MR**1357749**, DOI 10.1007/BF02762074 - Eric Mortenson,
*Supercongruences for truncated $_{n+1}\!F_n$ hypergeometric series with applications to certain weight three newforms*, Proc. Amer. Math. Soc.**133**(2005), no. 2, 321–330. MR**2093051**, DOI 10.1090/S0002-9939-04-07697-X - Ken Ono,
*Values of Gaussian hypergeometric series*, Trans. Amer. Math. Soc.**350**(1998), no. 3, 1205–1223. MR**1407498**, DOI 10.1090/S0002-9947-98-01887-X - Ken Ono,
*The web of modularity: arithmetic of the coefficients of modular forms and $q$-series*, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR**2020489** - Ken Ono and David Penniston,
*Congruences for $_3F_2$ hypergeometric functions over finite fields*, Illinois J. Math.**46**(2002), no. 3, 679–684. MR**1951234** - C. Peters, J. Top, and M. van der Vlugt,
*The Hasse zeta function of a $K3$ surface related to the number of words of weight $5$ in the Melas codes*, J. Reine Angew. Math.**432**(1992), 151–176. MR**1184764** - SAGE Mathematical Software, http://www.sagemath.org
- W. Stein, The Modular Forms Database, http://sage.math.washington.edu/

## Bibliographic Information

**Ron Evans**- Affiliation: Department of Mathematics 0112, University of California at San Diego, La Jolla, California 92093-0112
- MR Author ID: 64500
- Email: revans@ucsd.edu
- Received by editor(s): June 22, 2009
- Published electronically: September 16, 2009
- Communicated by: Ken Ono
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**138**(2010), 517-531 - MSC (2000): Primary 11T24; Secondary 11F11, 11L05, 33C20
- DOI: https://doi.org/10.1090/S0002-9939-09-10091-6
- MathSciNet review: 2557169