Holomorphic automorphisms of Danielewski surfaces I — density of the group of overshears
HTML articles powered by AMS MathViewer
- by Frank Kutzschebauch and Andreas Lind
- Proc. Amer. Math. Soc. 139 (2011), 3915-3927
- DOI: https://doi.org/10.1090/S0002-9939-2011-10855-4
- Published electronically: March 10, 2011
- PDF | Request permission
Abstract:
We define the notion of shears and overshears on a Danielewski surface. We show that the group generated by shears and overshears is dense (in the compact open topology) in the path-connected component of the identity of the holomorphic automorphism group.References
- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
- Patrick Ahern and Walter Rudin, Periodic automorphisms of $\textbf {C}^n$, Indiana Univ. Math. J. 44 (1995), no. 1, 287–303. MR 1336443, DOI 10.1512/iumj.1995.44.1989
- Erik Andersén, Volume-preserving automorphisms of $\textbf {C}^n$, Complex Variables Theory Appl. 14 (1990), no. 1-4, 223–235. MR 1048723, DOI 10.1080/17476939008814422
- Erik Andersén and László Lempert, On the group of holomorphic automorphisms of $\textbf {C}^n$, Invent. Math. 110 (1992), no. 2, 371–388. MR 1185588, DOI 10.1007/BF01231337
- I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, The automorphism group of a flexible affine variety is infinitely transitive (2010), arXiv:1011.5375.
- W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw (1989).
- Ferdinand Docquier and Hans Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94–123 (German). MR 148939, DOI 10.1007/BF01360084
- Karl-Heinz Fieseler, On complex affine surfaces with $\textbf {C}^+$-action, Comment. Math. Helv. 69 (1994), no. 1, 5–27. MR 1259603, DOI 10.1007/BF02564471
- Franc Forstnerič and Jean-Pierre Rosay, Approximation of biholomorphic mappings by automorphisms of $\textbf {C}^n$, Invent. Math. 112 (1993), no. 2, 323–349. MR 1213106, DOI 10.1007/BF01232438
- Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174 (German). MR 8915, DOI 10.1515/crll.1942.184.161
- Shulim Kaliman and Frank Kutzschebauch, Density property for hypersurfaces $UV=P(\overline X)$, Math. Z. 258 (2008), no. 1, 115–131. MR 2350038, DOI 10.1007/s00209-007-0162-z
- Shulim Kaliman and Frank Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), no. 1, 71–87. MR 2385667, DOI 10.1007/s00222-007-0094-6
- S. Kaliman, F. Kutzschebauch, On the present state of the Andersén-Lempert theory, arXiv:1003.3434.
- Shulim Kaliman and Frank Kutzschebauch, Algebraic volume density property of affine algebraic manifolds, Invent. Math. 181 (2010), no. 3, 605–647. MR 2660454, DOI 10.1007/s00222-010-0255-x
- Hanspeter Kraft and Frank Kutzschebauch, Equivariant affine line bundles and linearization, Math. Res. Lett. 3 (1996), no. 5, 619–627. MR 1418576, DOI 10.4310/MRL.1996.v3.n5.a5
- L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. 69 (1990), no. 2, 250–256. MR 1045377, DOI 10.1007/BF02937308
- L. Makar-Limanov, On the group of automorphisms of a surface $x^ny=P(z)$, Israel J. Math. 121 (2001), 113–123. MR 1818396, DOI 10.1007/BF02802499
- Jean-Pierre Rosay and Walter Rudin, Holomorphic maps from $\textbf {C}^n$ to $\textbf {C}^n$, Trans. Amer. Math. Soc. 310 (1988), no. 1, 47–86. MR 929658, DOI 10.1090/S0002-9947-1988-0929658-4
- W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33–41. MR 54574
- Dror Varolin, A general notion of shears, and applications, Michigan Math. J. 46 (1999), no. 3, 533–553. MR 1721579, DOI 10.1307/mmj/1030132478
- Dror Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135–160. MR 1829353, DOI 10.1007/BF02921959
- Dror Varolin, The density property for complex manifolds and geometric structures. II, Internat. J. Math. 11 (2000), no. 6, 837–847. MR 1785520, DOI 10.1142/S0129167X00000404
Bibliographic Information
- Frank Kutzschebauch
- Affiliation: Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- MR Author ID: 330461
- Email: Frank.Kutzschebauch@math.unibe.ch
- Andreas Lind
- Affiliation: Department of Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- Email: Andreas.Lind@miun.se
- Received by editor(s): April 22, 2010
- Received by editor(s) in revised form: April 29, 2010, and September 6, 2010
- Published electronically: March 10, 2011
- Communicated by: Franc Forstnerič
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 3915-3927
- MSC (2010): Primary 32Q28; Secondary 32M17
- DOI: https://doi.org/10.1090/S0002-9939-2011-10855-4
- MathSciNet review: 2823038