## Holomorphic automorphisms of Danielewski surfaces I — density of the group of overshears

HTML articles powered by AMS MathViewer

- by Frank Kutzschebauch and Andreas Lind PDF
- Proc. Amer. Math. Soc.
**139**(2011), 3915-3927 Request permission

## Abstract:

We define the notion of shears and overshears on a Danielewski surface. We show that the group generated by shears and overshears is dense (in the compact open topology) in the path-connected component of the identity of the holomorphic automorphism group.## References

- Ralph Abraham and Jerrold E. Marsden,
*Foundations of mechanics*, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR**515141** - Patrick Ahern and Walter Rudin,
*Periodic automorphisms of $\textbf {C}^n$*, Indiana Univ. Math. J.**44**(1995), no. 1, 287–303. MR**1336443**, DOI 10.1512/iumj.1995.44.1989 - Erik Andersén,
*Volume-preserving automorphisms of $\textbf {C}^n$*, Complex Variables Theory Appl.**14**(1990), no. 1-4, 223–235. MR**1048723**, DOI 10.1080/17476939008814422 - Erik Andersén and László Lempert,
*On the group of holomorphic automorphisms of $\textbf {C}^n$*, Invent. Math.**110**(1992), no. 2, 371–388. MR**1185588**, DOI 10.1007/BF01231337 - I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg,
*The automorphism group of a flexible affine variety is infinitely transitive*(2010), arXiv:1011.5375. - W. Danielewski,
*On a cancellation problem and automorphism groups of affine algebraic varieties*, preprint, Warsaw (1989). - Ferdinand Docquier and Hans Grauert,
*Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten*, Math. Ann.**140**(1960), 94–123 (German). MR**148939**, DOI 10.1007/BF01360084 - Karl-Heinz Fieseler,
*On complex affine surfaces with $\textbf {C}^+$-action*, Comment. Math. Helv.**69**(1994), no. 1, 5–27. MR**1259603**, DOI 10.1007/BF02564471 - Franc Forstnerič and Jean-Pierre Rosay,
*Approximation of biholomorphic mappings by automorphisms of $\textbf {C}^n$*, Invent. Math.**112**(1993), no. 2, 323–349. MR**1213106**, DOI 10.1007/BF01232438 - Heinrich W. E. Jung,
*Über ganze birationale Transformationen der Ebene*, J. Reine Angew. Math.**184**(1942), 161–174 (German). MR**8915**, DOI 10.1515/crll.1942.184.161 - Shulim Kaliman and Frank Kutzschebauch,
*Density property for hypersurfaces $UV=P(\overline X)$*, Math. Z.**258**(2008), no. 1, 115–131. MR**2350038**, DOI 10.1007/s00209-007-0162-z - Shulim Kaliman and Frank Kutzschebauch,
*Criteria for the density property of complex manifolds*, Invent. Math.**172**(2008), no. 1, 71–87. MR**2385667**, DOI 10.1007/s00222-007-0094-6 - S. Kaliman, F. Kutzschebauch,
*On the present state of the Andersén-Lempert theory*, arXiv:1003.3434. - Shulim Kaliman and Frank Kutzschebauch,
*Algebraic volume density property of affine algebraic manifolds*, Invent. Math.**181**(2010), no. 3, 605–647. MR**2660454**, DOI 10.1007/s00222-010-0255-x - Hanspeter Kraft and Frank Kutzschebauch,
*Equivariant affine line bundles and linearization*, Math. Res. Lett.**3**(1996), no. 5, 619–627. MR**1418576**, DOI 10.4310/MRL.1996.v3.n5.a5 - L. Makar-Limanov,
*On groups of automorphisms of a class of surfaces*, Israel J. Math.**69**(1990), no. 2, 250–256. MR**1045377**, DOI 10.1007/BF02937308 - L. Makar-Limanov,
*On the group of automorphisms of a surface $x^ny=P(z)$*, Israel J. Math.**121**(2001), 113–123. MR**1818396**, DOI 10.1007/BF02802499 - Jean-Pierre Rosay and Walter Rudin,
*Holomorphic maps from $\textbf {C}^n$ to $\textbf {C}^n$*, Trans. Amer. Math. Soc.**310**(1988), no. 1, 47–86. MR**929658**, DOI 10.1090/S0002-9947-1988-0929658-4 - W. van der Kulk,
*On polynomial rings in two variables*, Nieuw Arch. Wisk. (3)**1**(1953), 33–41. MR**54574** - Dror Varolin,
*A general notion of shears, and applications*, Michigan Math. J.**46**(1999), no. 3, 533–553. MR**1721579**, DOI 10.1307/mmj/1030132478 - Dror Varolin,
*The density property for complex manifolds and geometric structures*, J. Geom. Anal.**11**(2001), no. 1, 135–160. MR**1829353**, DOI 10.1007/BF02921959 - Dror Varolin,
*The density property for complex manifolds and geometric structures. II*, Internat. J. Math.**11**(2000), no. 6, 837–847. MR**1785520**, DOI 10.1142/S0129167X00000404

## Additional Information

**Frank Kutzschebauch**- Affiliation: Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- MR Author ID: 330461
- Email: Frank.Kutzschebauch@math.unibe.ch
**Andreas Lind**- Affiliation: Department of Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- Email: Andreas.Lind@miun.se
- Received by editor(s): April 22, 2010
- Received by editor(s) in revised form: April 29, 2010, and September 6, 2010
- Published electronically: March 10, 2011
- Communicated by: Franc Forstnerič
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**139**(2011), 3915-3927 - MSC (2010): Primary 32Q28; Secondary 32M17
- DOI: https://doi.org/10.1090/S0002-9939-2011-10855-4
- MathSciNet review: 2823038