On radial and polar Blaschke-Minkowski homomorphisms
HTML articles powered by AMS MathViewer
- by Chang-jian Zhao
- Proc. Amer. Math. Soc. 141 (2013), 667-676
- DOI: https://doi.org/10.1090/S0002-9939-2012-11318-8
- Published electronically: May 31, 2012
- PDF | Request permission
Abstract:
Brunn-Minkowski type inequalities for radial Blaschke-Minkowski homomorphisms of star bodies and polar Blaschke-Minkowski homomorphisms of convex bodies are established.References
- J. Abardia, A. Bernig, Projection bodies in complex vector spaces, Adv. Math., 227(2011), 830-846.
- Semyon Alesker, Andreas Bernig, and Franz E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal. 21 (2011), no. 4, 751–773. MR 2827009, DOI 10.1007/s00039-011-0125-8
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0158038, DOI 10.1007/978-3-642-64971-4
- Melvin Dresher, Moment spaces and inequalities, Duke Math. J. 20 (1953), 261–271. MR 55389
- Christoph Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), no. 5, 2253–2276. MR 2583498, DOI 10.1512/iumj.2009.58.3685
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- Christoph Haberl, $L_p$ intersection bodies, Adv. Math. 217 (2008), no. 6, 2599–2624. MR 2397461, DOI 10.1016/j.aim.2007.11.013
- Christoph Haberl and Monika Ludwig, A characterization of $L_p$ intersection bodies, Int. Math. Res. Not. , posted on (2006), Art. ID 10548, 29. MR 2250020, DOI 10.1155/IMRN/2006/10548
- Markus Kiderlen, Blaschke- and Minkowski-endomorphisms of convex bodies, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5539–5564. MR 2238926, DOI 10.1090/S0002-9947-06-03914-6
- Monika Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191–4213. MR 2159706, DOI 10.1090/S0002-9947-04-03666-9
- Monika Ludwig, General affine surface areas, Adv. Math. 224 (2010), no. 6, 2346–2360. MR 2652209, DOI 10.1016/j.aim.2010.02.004
- Monika Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), no. 1, 133–161. MR 2772547
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Erwin Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. MR 380631, DOI 10.2140/pjm.1975.58.531
- Erwin Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91–105. MR 766208, DOI 10.1090/S0002-9947-1985-0766208-7
- Franz E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006), no. 2, 211–234 (2007). MR 2343256, DOI 10.1112/S0025579300000103
- Franz E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008), no. 1, 344–368. MR 2435426, DOI 10.1016/j.aim.2008.05.001
- Franz E. Schuster, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5567–5591. MR 2327043, DOI 10.1090/S0002-9947-07-04270-5
- Franz E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), no. 1, 1–30. MR 2668553, DOI 10.1215/00127094-2010-033
- Franz E. Schuster and Thomas Wannerer, $\textrm {GL}(n)$ contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012), no. 2, 815–826. MR 2846354, DOI 10.1090/S0002-9947-2011-05364-X
- T. Wannerer, $GL(n)$ equivariant Minkowski valuations, Indiana Univ. Math. J., in press. http://www.iumj.indiana.edu/IUMJ/forthcoming.php
- Chang-jian Zhao, On Blaschke-Minkowski homomorphisms, Geom. Dedicata 149 (2010), 373–378. MR 2737698, DOI 10.1007/s10711-010-9487-6
- Chang-jian Zhao, On intersection and mixed intersection bodies, Geom. Dedicata 141 (2009), 109–122. MR 2520066, DOI 10.1007/s10711-008-9346-x
- ChangJian Zhao, $L_p$-mixed intersection bodies, Sci. China Ser. A 51 (2008), no. 12, 2172–2188. MR 2462021, DOI 10.1007/s11425-008-0074-3
- Chang-jian Zhao, $L_p$-dual quermassintegral sums, Sci. China Ser. A 50 (2007), no. 9, 1347–1360. MR 2370622, DOI 10.1007/s11425-007-0117-1
- Chang-jian Zhao and Gang-song Leng, On polars of mixed projection bodies, J. Math. Anal. Appl. 316 (2006), no. 2, 664–678. MR 2207338, DOI 10.1016/j.jmaa.2005.04.073
- Chang-jian Zhao and Gangsong Leng, Brunn-Minkowski inequality for mixed intersection bodies, J. Math. Anal. Appl. 301 (2005), no. 1, 115–123. MR 2105924, DOI 10.1016/j.jmaa.2004.07.013
Bibliographic Information
- Chang-jian Zhao
- Affiliation: Department of Mathematics, China Jiliang University, Hangzhou 310018, People’s Republic of China
- Email: chjzhao@yahoo.com.cn, chjzhao@163.com
- Received by editor(s): April 4, 2011
- Received by editor(s) in revised form: June 4, 2011, and June 26, 2011
- Published electronically: May 31, 2012
- Additional Notes: This research is supported by the National Natural Science Foundation of China (10971205).
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 667-676
- MSC (2010): Primary 52A40, 53A15
- DOI: https://doi.org/10.1090/S0002-9939-2012-11318-8
- MathSciNet review: 2996971