## Burghelea-Haller analytic torsion of $\mathbb {Z}_{2}$-graded elliptic complexes

HTML articles powered by AMS MathViewer

- by Guangxiang Su PDF
- Proc. Amer. Math. Soc.
**142**(2014), 2559-2568 Request permission

## Abstract:

In this paper, we extend the analytic torsion of $\mathbb {Z}_{2}$-graded elliptic complexes introduced by Mathai and Wu to the complex-valued case in the line of Burghelea and Haller. We also study properties of this generalized analytic torsion.## References

- Jean-Michel Bismut and Weiping Zhang,
*An extension of a theorem by Cheeger and Müller*, Astérisque**205**(1992), 235 (English, with French summary). With an appendix by François Laudenbach. MR**1185803** - Maxim Braverman and Thomas Kappeler,
*Refined analytic torsion*, J. Differential Geom.**78**(2008), no. 2, 193–267. MR**2394022** - Maxim Braverman and Thomas Kappeler,
*Refined analytic torsion as an element of the determinant line*, Geom. Topol.**11**(2007), 139–213. MR**2302591**, DOI 10.2140/gt.2007.11.139 - Maxim Braverman and Thomas Kappeler,
*Ray-Singer type theorem for the refined analytic torsion*, J. Funct. Anal.**243**(2007), no. 1, 232–256. MR**2291437**, DOI 10.1016/j.jfa.2006.10.008 - Dan Burghelea and Stefan Haller,
*Torsion, as a function on the space of representations*, $C^\ast$-algebras and elliptic theory II, Trends Math., Birkhäuser, Basel, 2008, pp. 41–66. MR**2408135**, DOI 10.1007/978-3-7643-8604-7_{2} - Dan Burghelea and Stefan Haller,
*Complex-valued Ray-Singer torsion*, J. Funct. Anal.**248**(2007), no. 1, 27–78. MR**2329682**, DOI 10.1016/j.jfa.2007.03.027 - Dan Burghelea and Stefan Haller,
*Complex valued Ray-Singer torsion II*, Math. Nachr.**283**(2010), no. 10, 1372–1402. MR**2744135**, DOI 10.1002/mana.200910122 - Jochen Brüning and Toshikazu Sunada,
*On the spectrum of periodic elliptic operators*, Nagoya Math. J.**126**(1992), 159–171. MR**1171598**, DOI 10.1017/S0027763000004049 - Sylvain E. Cappell and Edward Y. Miller,
*Complex-valued analytic torsion for flat bundles and for holomorphic bundles with $(1,1)$ connections*, Comm. Pure Appl. Math.**63**(2010), no. 2, 133–202. MR**2588459**, DOI 10.1002/cpa.20307 - Jeff Cheeger,
*Analytic torsion and the heat equation*, Ann. of Math. (2)**109**(1979), no. 2, 259–322. MR**528965**, DOI 10.2307/1971113 - Peter B. Gilkey,
*Invariance theory, the heat equation, and the Atiyah-Singer index theorem*, 2nd ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR**1396308** - Peter Greiner,
*An asymptotic expansion for the heat equation*, Arch. Rational Mech. Anal.**41**(1971), 163–218. MR**331441**, DOI 10.1007/BF00276190 - Gerd Grubb and Robert T. Seeley,
*Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems*, Invent. Math.**121**(1995), no. 3, 481–529. MR**1353307**, DOI 10.1007/BF01884310 - Rung-Tzung Huang,
*Refined analytic torsion for twisted de Rham complexes*, Comm. Anal. Geom.**19**(2011), no. 2, 401–449. MR**2835884**, DOI 10.4310/CAG.2011.v19.n2.a5 - Rung-Tzung Huang,
*Twisted Cappell-Miller holomorphic and analytic torsions*, Pacific J. Math.**251**(2011), no. 1, 81–107. MR**2794616**, DOI 10.2140/pjm.2011.251.81 - J. Milnor,
*Whitehead torsion*, Bull. Amer. Math. Soc.**72**(1966), 358–426. MR**196736**, DOI 10.1090/S0002-9904-1966-11484-2 - J. Milnor,
*A note on curvature and fundamental group*, J. Differential Geometry**2**(1968), 1–7. MR**232311** - Werner Müller,
*Analytic torsion and $R$-torsion of Riemannian manifolds*, Adv. in Math.**28**(1978), no. 3, 233–305. MR**498252**, DOI 10.1016/0001-8708(78)90116-0 - Werner Müller,
*Analytic torsion and $R$-torsion for unimodular representations*, J. Amer. Math. Soc.**6**(1993), no. 3, 721–753. MR**1189689**, DOI 10.1090/S0894-0347-1993-1189689-4 - Varghese Mathai and Daniel Quillen,
*Superconnections, Thom classes, and equivariant differential forms*, Topology**25**(1986), no. 1, 85–110. MR**836726**, DOI 10.1016/0040-9383(86)90007-8 - Varghese Mathai and Siye Wu,
*Analytic torsion for twisted de Rham complexes*, J. Differential Geom.**88**(2011), no. 2, 297–332. MR**2838268** - Varghese Mathai and SiYe Wu,
*Twisted analytic torsion*, Sci. China Math.**53**(2010), no. 3, 555–563. MR**2608312**, DOI 10.1007/s11425-010-0053-3 - Varghese Mathai and Siye Wu,
*Analytic torsion of $\Bbb Z_2$-graded elliptic complexes*, Noncommutative geometry and global analysis, Contemp. Math., vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 199–212. MR**2815136**, DOI 10.1090/conm/546/10790 - D. Quillen,
*Determinants of Cauchy-Riemann operators over a Riemann surface,*Funct. Anal. Appl.**14**(1985), 31–34. - Daniel Quillen,
*Superconnections and the Chern character*, Topology**24**(1985), no. 1, 89–95. MR**790678**, DOI 10.1016/0040-9383(85)90047-3 - D. B. Ray and I. M. Singer,
*$R$-torsion and the Laplacian on Riemannian manifolds*, Advances in Math.**7**(1971), 145–210. MR**295381**, DOI 10.1016/0001-8708(71)90045-4 - Guangxiang Su,
*Burghelea-Haller analytic torsion for twisted de Rham complexes*, Pacific J. Math.**250**(2011), no. 2, 421–437. MR**2794608**, DOI 10.2140/pjm.2011.250.421 - Edward Witten,
*Supersymmetry and Morse theory*, J. Differential Geometry**17**(1982), no. 4, 661–692 (1983). MR**683171** - M. Wodzicki,
*Local invariants of spectral asymmetry*, Invent. Math.**75**(1984), no. 1, 143–177. MR**728144**, DOI 10.1007/BF01403095

## Additional Information

**Guangxiang Su**- Affiliation: Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- Email: guangxiangsu@nankai.edu.cn
- Received by editor(s): September 29, 2010
- Received by editor(s) in revised form: October 13, 2010, November 16, 2011, and July 19, 2012
- Published electronically: March 27, 2014
- Additional Notes: The author was supported by “the Fundamental Research Funds for the Central Universities” and NSFC 11101219.
- Communicated by: Varghese Mathai
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**142**(2014), 2559-2568 - MSC (2010): Primary 58J52
- DOI: https://doi.org/10.1090/S0002-9939-2014-11951-4
- MathSciNet review: 3195776