## Hyperbolicity and exponential long-time convergence for space-time periodic Hamilton-Jacobi equations

HTML articles powered by AMS MathViewer

- by Héctor Sánchez-Morgado PDF
- Proc. Amer. Math. Soc.
**143**(2015), 731-740 Request permission

## Abstract:

In this note we prove exponential convergence to time-periodic states of the solutions of space-time periodic Hamilton-Jacobi equations, assuming that the Aubry set is the union of a finite number of hyperbolic periodic orbits of the Euler-Lagrange flow. The period of limiting solutions is the least common multiple of the periods of the orbits in the Aubry set. This extends a result that was obtained by Iturriaga and the author for the autonomous case.## References

- Luis Barreira and Claudia Valls,
*Hölder Grobman-Hartman linearization*, Discrete Contin. Dyn. Syst.**18**(2007), no. 1, 187–197. MR**2276493**, DOI 10.3934/dcds.2007.18.187 - G. R. Belitskii,
*On the Grobman-Hartman theorem in class*$C^\alpha$. Unpublished preprint. - Patrick Bernard,
*Smooth critical sub-solutions of the Hamilton-Jacobi equation*, Math. Res. Lett.**14**(2007), no. 3, 503–511. MR**2318653**, DOI 10.4310/MRL.2007.v14.n3.a14 - Patrick Bernard,
*Connecting orbits of time dependent Lagrangian systems*, Ann. Inst. Fourier (Grenoble)**52**(2002), no. 5, 1533–1568 (English, with English and French summaries). MR**1935556** - G. Contreras, R. Iturriaga, H. Sánchez-Morgado,
*Weak solutions of the Hamilton Jacobi equation for Time Periodic Lagrangians*. Preprint. arXiv:1207.0287. - Renato Iturriaga and Héctor Sánchez-Morgado,
*Hyperbolicity and exponential convergence of the Lax-Oleinik semigroup*, J. Differential Equations**246**(2009), no. 5, 1744–1753. MR**2494686**, DOI 10.1016/j.jde.2008.12.012 - Fathi A.
*The Weak KAM Theorem in Lagrangian Dynamics.*To appear in Cambridge Studies in Advanced Mathematics. - E. Guerra and H. Sánchez-Morgado,
*Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations*. Comm. Pure App. Analysis.**13**(2014) no. 1, 331-346. MR3082564. - John N. Mather,
*Action minimizing invariant measures for positive definite Lagrangian systems*, Math. Z.**207**(1991), no. 2, 169–207. MR**1109661**, DOI 10.1007/BF02571383 - Kaizhi Wang and Jun Yan,
*The rate of convergence of new Lax-Oleinik type operators for time-periodic positive definite Lagrangian systems*, Nonlinearity**25**(2012), no. 7, 2039–2057. MR**2947934**, DOI 10.1088/0951-7715/25/7/2039

## Additional Information

**Héctor Sánchez-Morgado**- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México. México DF 04510, México
- MR Author ID: 340702
- ORCID: 0000-0003-3981-408X
- Email: hector@math.unam.mx
- Received by editor(s): June 13, 2012
- Received by editor(s) in revised form: May 11, 2013
- Published electronically: October 22, 2014
- Communicated by: Walter Craig
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**143**(2015), 731-740 - MSC (2010): Primary 37J50, 49L25, 35F21; Secondary 70H20
- DOI: https://doi.org/10.1090/S0002-9939-2014-12290-8
- MathSciNet review: 3283659