Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Regularity bounds for Koszul cycles

Authors: Aldo Conca and Satoshi Murai
Journal: Proc. Amer. Math. Soc. 143 (2015), 493-503
MSC (2010): Primary 13D02, 13D03
Published electronically: October 24, 2014
MathSciNet review: 3283639
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Castelnuovo-Mumford regularity of the module of Koszul cycles $Z_t(I,M)$ of a homogeneous ideal $I$ in a polynomial ring $S$ with respect to a graded module $M$ in the homological position $t\in {\mathbb {N}}$. Under mild assumptions on the base field we prove that $\operatorname {reg} Z_t(I,S)$ is a subadditive function of $t$ when $\operatorname {dim} S/I=0$. For Borel-fixed ideals $I,J$ we prove that $\operatorname {reg} Z_t(I,S/J)\leq t(1+ \operatorname {reg} I)+\operatorname {reg} S/J$, a result already announced by Bruns, Conca and Römer.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13D02, 13D03

Retrieve articles in all journals with MSC (2010): 13D02, 13D03

Additional Information

Aldo Conca
Affiliation: Dipartimento di Matematica, Universitá di Genova, Via Dodecaneso 35, 16146 Genova, Italy
MR Author ID: 335439

Satoshi Murai
Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 560-0043, Japan
MR Author ID: 800440

Keywords: Castelnuovo-Mumford regularity, Koszul cycles, Koszul homology
Received by editor(s): October 11, 2012
Received by editor(s) in revised form: May 2, 2013
Published electronically: October 24, 2014
Additional Notes: The research of the second author was partially supported by KAKENHI 22740018
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.