Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Solution of paraxial wave equation for inhomogeneous media in linear and quadratic approximation
HTML articles powered by AMS MathViewer

by Alex Mahalov and Sergei K. Suslov PDF
Proc. Amer. Math. Soc. 143 (2015), 595-610 Request permission

Abstract:

We construct explicit solutions of the inhomogeneous parabolic wave equation in a linear and quadratic approximation. As examples, oscillating laser beams in a $1D$ parabolic waveguide, spiral light beams in $2D$ varying media and an effect of superfocusing of particle beams in a thin monocrystal film are briefly discussed. Transformations of nonlinear equations into the corresponding autonomous and homogeneous forms are found and a review of important applications is also given.
References
  • M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378, DOI 10.1017/CBO9780511623998
  • Mark J. Ablowitz and Harvey Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. MR 642018
  • E. G. Abramochkin and V. G. Volostnikov, Spiral light beams, Physics–Uspekhi 47 (2004), no. 12, 1177–1203.
  • G. P. Agrawal, A. K. Ghatak, and C. L. Mehtav, Propagation of a partially coherent beam through selfoc fibers, Opt. Comm. 12 (1974), no. 3, 333–337.
  • S. A. Akhmanov, Yu. E. D′yakov, and A. S. Chirkin, Vvedenie v statisticheskuyu radiofiziku i optiku, “Nauka”, Moscow, 1981 (Russian). MR 626992
  • S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium, Physics–Uspekhi 10 (1968), no. 1–2, 609–636.
  • S. A. Akhmanov, V. A. Vyslouh, and A. S. Chirkin, Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation, Physics–Uspekhi 29 (1986), no. 7, 642–677.
  • S. A. Akhmanov, V. A. Vyslouh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, Nauka, Moscow, 1988 [in Russian].
  • M. V. Berry and N. L. Balazs, Nonspreading wave packets, Am. J. Phys. 47 (1979), no. 2, 264–267.
  • H. H. Chen, Y. C. Lee, and C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scripta 20 (1979), no. 3-4, 490–492. Special issue on solitons in physics. MR 544493, DOI 10.1088/0031-8949/20/3-4/026
  • Hsing Hen Chen and Chuan Sheng Liu, Solitons in nonuniform media, Phys. Rev. Lett. 37 (1976), no. 11, 693–697. MR 411488, DOI 10.1103/PhysRevLett.37.693
  • H.-H. Chen and Ch.-Sh. Liu, Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, Phys. Fluids 21 (1978), no. 3, 377–380.
  • S. Roy Choudhury, Modulated amplitude waves in the cubic-quintic Ginzburg-Landau equation, Math. Comput. Simulation 69 (2005), no. 3-4, 243–256. MR 2152257, DOI 10.1016/j.matcom.2005.01.003
  • Peter A. Clarkson, Painlevé analysis of the damped, driven nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 1-2, 109–126. MR 952332, DOI 10.1017/S0308210500026718
  • Peter A. Clarkson, Dimensional reductions and exact solutions of a generalized nonlinear Schrödinger equation, Nonlinearity 5 (1992), no. 2, 453–472. MR 1158381
  • Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
  • Peter A. Clarkson and Christopher M. Cosgrove, Painlevé analysis of the nonlinear Schrödinger family of equations, J. Phys. A 20 (1987), no. 8, 2003–2024. MR 893304
  • Robert Conte and Micheline Musette, Linearity inside nonlinearity: exact solutions to the complex Ginzburg-Landau equation, Phys. D 69 (1993), no. 1-2, 1–17. MR 1245653, DOI 10.1016/0167-2789(93)90177-3
  • R. Conte and M. Musette, Elliptic general analytic solutions, Stud. Appl. Math. 123 (2009), no. 1, 63–81. MR 2538286, DOI 10.1111/j.1467-9590.2009.00447.x
  • Robert Conte and Tuen-Wai Ng, Meromorphic traveling wave solutions of the complex cubic-quintic Ginzburg-Landau equation, Acta Appl. Math. 122 (2012), 153–166. MR 2993990, DOI 10.1007/s10440-012-9734-y
  • R. Conte and T.-W. Ng, Detection and construction of an elliptic solution of the complex cubic-quintic Ginzburg–Landau equation, Theor. Math. Phys. 172 (2012), no. 2, 1073–1084.
  • Ricardo Cordero-Soto, Raquel M. Lopez, Erwin Suazo, and Sergei K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys. 84 (2008), no. 2-3, 159–178. MR 2415547, DOI 10.1007/s11005-008-0239-6
  • R. Kordero-Soto and S. K. Suslov, Time reversal for modified oscillators, Teoret. Mat. Fiz. 162 (2010), no. 3, 345–380 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 162 (2010), no. 3, 286–316. MR 2682129, DOI 10.1007/s11232-010-0023-5
  • F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71 (1999), 463–512.
  • Yu. N. Demkov, Channeling, superfocusing, and nuclear reactions, Phys. Atom. Nuclei, 72 (2009), no. 5, 779–785.
  • Yu. N. Demkov and J. D. Meyer, A sub-atomic microscope, superfocusing in channeling and close encounter atomic and nuclear reactions, Eur. Phys. J. B 42 (2004), 361–365.
  • V. V. Dodonov and V. I. Man′ko, Invariants and correlated states of nonstationary quantum systems, Trudy Fiz. Inst. Lebedev. 183 (1987), 71–181, 289 (Russian). MR 937883
  • Franco Flandoli and Alex Mahalov, Stochastic three-dimensional rotating Navier-Stokes equations: averaging, convergence and regularity, Arch. Ration. Mech. Anal. 205 (2012), no. 1, 195–237. MR 2927621, DOI 10.1007/s00205-012-0507-6
  • V. A. Fock, Selected works. Quantum mechanics and quantum field theory, Chapman & Hall/CRC, Boca Raton, FL, 2004. Edited by L. D. Faddeev, L. A. Khalfin and I. V. Komarov. MR 2083062
  • V. A. Fock, Electromagnetic diffraction and propagation problems, International Series of Monographs on Electromagnetic Waves, Vol. 1, Pergamon Press, Oxford-Edinburgh-New York, 1965. MR 0205569
  • L. Gagnon, Exact traveling-wave solutions for optical models based on the nonlinear cubic-quintic Schrödinger equation, J. Opt. Soc. Amer. A 6 (1989), no. 9, 1477–1483. MR 1015382, DOI 10.1364/JOSAA.6.001477
  • L. Gagnon, B. Grammaticos, A. Ramani, and P. Winternitz, Lie symmetries of a generalised nonlinear Schrödinger equation. III. Reductions to third-order ordinary differential equations, J. Phys. A 22 (1989), no. 5, 499–509. MR 984527
  • L. Gagnon and P. Winternitz, Lie symmetries of a generalised nonlinear Schrödinger equation. I. The symmetry group and its subgroups, J. Phys. A 21 (1988), no. 7, 1493–1511. MR 951040
  • L. Gagnon and P. Winternitz, Lie symmetries of a generalised nonlinear Schrödinger equation. II. Exact solutions, J. Phys. A 22 (1989), no. 5, 469–497. MR 984526
  • L. Gagnon and P. Winternitz, Symmetry classes of variable coefficient nonlinear Schrödinger equations, J. Phys. A 26 (1993), no. 23, 7061–7076. MR 1253895
  • J. A. Giannini and R. I. Joseph, The role of the second Painlevé transcendent in nonlinear optics, Phys. Lett. A 141 (1989), no. 8-9, 417–419. MR 1030927, DOI 10.1016/0375-9601(89)90860-8
  • A. V. Gurevich, Nonlinear phenomena in the ionosphere, Springer–Verlag, Berlin, 1978.
  • A. N. W. Hone, Painlevé tests, singularity structure and integrability, Integrability, Lecture Notes in Phys., vol. 767, Springer, Berlin, 2009, pp. 245–277. MR 2867552, DOI 10.1007/978-3-540-88111-7_{8}
  • A. N. W. Hone, Non-existence of elliptic travelling wave solutions of the complex Ginzburg-Landau equation, Phys. D 205 (2005), no. 1-4, 292–306. MR 2167157, DOI 10.1016/j.physd.2004.10.011
  • R. S. Johnson, On the modulation of water waves in the neighbourhood of $kh\approx 1.363$, Proc. Roy. Soc. London Ser. A 357 (1977), no. 1689, 131–141. MR 479013, DOI 10.1098/rspa.1977.0159
  • B. B. Kadomtsev and V. I. Karpman, Nonlinear waves, Uspehi Fiz. Nauk 103 (1971), 193–232 (Russian); English transl., Soviet Physics Uspekhi 14 (1971), 40–60. MR 0449148, DOI 10.1070/pu1971v014n01abeh004441
  • Yu. Kagan, E. L. Surkov and G. V. Shlyapnikov, Evolution and global collapse of trapped Bose condensates under variations of the scattering length, Phys. Rev. Lett. 79 (1997), no. 14, 2604–2607.
  • Saburo Kakei, Narimasa Sasa, and Junkichi Satsuma, Bilinearization of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan 64 (1995), no. 5, 1519–1523. MR 1335407, DOI 10.1143/JPSJ.64.1519
  • Christian Kharif, Efim Pelinovsky, and Alexey Slunyaev, Rogue waves in the ocean, Advances in Geophysical and Environmental Mechanics and Mathematics, Springer-Verlag, Berlin, 2009. MR 2841079
  • E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Qi, Low-dimensional Bose liquids: beyond the Gross–Pitaevskii approximation, Phys. Rev. Lett. 85 (2000), no. 6, 1146–1149.
  • C. Krattenthaler, S. I. Kryuchkov, A. Mahalov, and S. K. Suslov, On the problem of electromagnetic-field quantization, arXiv:1301.7328v2 [math-ph] 9 Apr 2013.
  • A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys. 25 (1984), no. 12, 3433–3438. MR 767547, DOI 10.1063/1.526113
  • E. A. Kuznetsov and S. K. Turitsyn, Talanov transformations in self-focusing problems and instability of stationary waveguides, Phys. Lett. A 112 (1985), no. 6–7, 273–275.
  • N. Lanfear, R. M. López and S. K. Suslov, Exact wave functions for generalized harmonic oscillators, J. Russ. Laser Res. 32 (2011), no. 4, 352–361.
  • R. M. López, S. K. Suslov, and J. M. Vega-Guzmán, Reconstructing the Schrödinger groups, Phys. Scr. 87 (2013), no. 3, 038118 (6 pages).
  • Raquel M. López, Sergei K. Suslov, and José M. Vega-Guzmán, On a hidden symmetry of quantum harmonic oscillators, J. Difference Equ. Appl. 19 (2013), no. 4, 543–554. MR 3040814, DOI 10.1080/10236198.2012.658384
  • A. Mahalov, E. Suazo, and S. K. Suslov, Spiral laser beams in inhomogeneous media, Opt. Lett. 38 (2013), no. 15, 1–4.
  • A. Mahalov and S. K. Suslov, An “Airy gun”: Self-accelerating solutions of the time-dependent Schrödinger equation in vacuum, Phys. Lett. A 377 (2012), 33–38.
  • A. Mahalov and S. K. Suslov, Wigner function approach to oscillating solutions of the $1D$-quintic nonlinear Schrödinger equation, J. Nonlinear Opt. Phys. & Mat. 22 (2013), no. 2, 1350013 (14 pages).
  • Philippe Marcq, Hugues Chaté, and Robert Conte, Exact solutions of the one-dimensional quintic complex Ginzburg-Landau equation, Phys. D 73 (1994), no. 4, 305–317. MR 1280881, DOI 10.1016/0167-2789(94)90102-3
  • Koji Mio, Tatsuki Ogino, Kazuo Minami, and Susumu Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan 41 (1976), no. 1, 265–271. MR 462141, DOI 10.1143/JPSJ.41.265
  • Koji Mio, Tatsuki Ogino, Kazuo Minami, and Susumu Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan 41 (1976), no. 1, 265–271. MR 462141, DOI 10.1143/JPSJ.41.265
  • Micheline Musette and Robert Conte, Analytic solitary waves of nonintegrable equations, Phys. D 181 (2003), no. 1-2, 70–79. MR 2003796, DOI 10.1016/S0167-2789(03)00069-1
  • A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991. Translated from the Russian. MR 1149380, DOI 10.1007/978-3-642-74748-9
  • S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • B. Øksendal, Stochastic differential equations, Springer–Verlag, Berlin, 2000.
  • S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskiĭ, Principles of statistical radiophysics. 3, Springer-Verlag, Berlin, 1989. Elements of random fields; Translated from the second Russian edition by Alexander P. Repyev [A. P. Rep′ev]. MR 1002949
  • W. van Saarloos, Front propagation into unstable states, Phys. Rep. 386 (2003), 29–222.
  • Wim van Saarloos and P. C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Phys. D 56 (1992), no. 4, 303–367. MR 1169610, DOI 10.1016/0167-2789(92)90175-M
  • B. Sanborn, S. K. Suslov, and L. Vinet, Dynamic invariants and Berry’s phase for generalized driven harmonic oscillators, J. Russ. Laser Res. 32 (2011), no. 5, 486–494.
  • G. A. Siviloglou and D. N. Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32 (2007), no. 2, 979–981.
  • G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Observation of accelerating Airy beams, Phys. Rev. Lett. 99 (2007), 213901 (4 pages).
  • Ronald Smith, Giant waves, J. Fluid Mech. 77 (1976), no. 3, 417–431. MR 436757, DOI 10.1017/S002211207600219X
  • E. Suazo and S. K. Suslov, Soliton-like solutions for nonlinear Schrödinger equation with variable quadratic Hamiltonians, J. Russ. Laser Res. 33 (2012), no. 1, 63–82.
  • Sergei K. Suslov, On integrability of nonautonomous nonlinear Schrödinger equations, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3067–3082. MR 2917080, DOI 10.1090/S0002-9939-2011-11176-6
  • Masayoshi Tajiri, Similarity reductions of the one- and two-dimensional nonlinear Schrödinger equations, J. Phys. Soc. Japan 52 (1983), no. 6, 1908–1917. MR 710726, DOI 10.1143/JPSJ.52.1908
  • W. Tang and A. Mahalov, Stochastic Lagrangian dynamics for charged flows in the $\emph {E-F}$ regions of ionosphere, Physics of Plasmas 203 (2013), 032305 (11 pages).
  • V. I. Talanov, Focusing of light in cubic media, JETP Lett. 11 (1970), 199–201.
  • Terence Tao, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, New York J. Math. 15 (2009), 265–282. MR 2530148
  • Sergey Yu. Vernov, Construction of special solutions for nonintegrable systems, J. Nonlinear Math. Phys. 13 (2006), no. 1, 50–63. MR 2217118, DOI 10.2991/jnmp.2006.13.1.5
  • S. Yu. Vernov, Elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation, J. Phys. A 40 (2007), no. 32, 9833–9844. MR 2370547, DOI 10.1088/1751-8113/40/32/009
  • M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Teoriya voln, 2nd ed., “Nauka”, Moscow, 1990 (Russian). MR 1127872
  • S. N. Vlasov and V. I. Talanov, The parabolic equation in wave propagation theory (on the 50th anniversary of the first publication), Izv. Vyssh. Uchebn. Zaved. Radiofiz. 38 (1995), no. 1-2, 3–19 (Russian, with English and Russian summaries); English transl., Radiophys. and Quantum Electronics 38 (1995), no. 1-2, 1–12 (1996). MR 1427164, DOI 10.1007/BF01051853
  • Miki Wadati, Heiji Sanuki, Kimiaki Konno, and Yoshi-Hiko Ichikawa, Circular polarized nonlinear Alfvén waves—a new type of nonlinear evolution equation in plasma physics, Rocky Mountain J. Math. 8 (1978), no. 1-2, 323–331. MR 496220, DOI 10.1216/RMJ-1978-8-1-323
  • Miki Wadati and Kiyoshi Sogo, Gauge transformations in soliton theory, J. Phys. Soc. Japan 52 (1983), no. 2, 394–398. MR 700302, DOI 10.1143/JPSJ.52.394
  • V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
Similar Articles
Additional Information
  • Alex Mahalov
  • Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287–1804
  • Email: mahalov@asu.edu
  • Sergei K. Suslov
  • Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287–1804
  • Email: sks@asu.edu
  • Received by editor(s): March 26, 2013
  • Published electronically: October 28, 2014
  • Additional Notes: This research was partially supported by AFOSR grant FA9550-11-1-0220.
  • Communicated by: Ken Ono
  • © Copyright 2014 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 143 (2015), 595-610
  • MSC (2010): Primary 35Q55, 35Q51; Secondary 35C05, 81Q05
  • DOI: https://doi.org/10.1090/S0002-9939-2014-12295-7
  • MathSciNet review: 3283647