## The polar cone of the set of monotone maps

HTML articles powered by AMS MathViewer

- by Fabio Cavalletti and Michael Westdickenberg PDF
- Proc. Amer. Math. Soc.
**143**(2015), 781-787 Request permission

## Abstract:

We prove that every element of the polar cone to the closed convex cone of monotone transport maps can be represented as the divergence of a measure field taking values in the positive definite matrices.## References

- Giovanni Alberti and Luigi Ambrosio,
*A geometrical approach to monotone functions in $\textbf {R}^n$*, Math. Z.**230**(1999), no. 2, 259–316. MR**1676726**, DOI 10.1007/PL00004691 - Guy Bouchitté, Wilfrid Gangbo, and Pierre Seppecher,
*Michell trusses and lines of principal action*, Math. Models Methods Appl. Sci.**18**(2008), no. 9, 1571–1603. MR**2446402**, DOI 10.1142/S0218202508003133 - H. Brézis,
*Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert*, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR**0348562** - G. Carlier and T. Lachand-Robert,
*Representation of the polar cone of convex functions and applications*, J. Convex Anal.**15**(2008), no. 3, 535–546. MR**2431410** - Gerald B. Folland,
*Real analysis*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications; A Wiley-Interscience Publication. MR**767633** - Pierre-Louis Lions,
*Identification du cône dual des fonctions convexes et applications*, C. R. Acad. Sci. Paris Sér. I Math.**326**(1998), no. 12, 1385–1390 (French, with English and French summaries). MR**1649179**, DOI 10.1016/S0764-4442(98)80397-2 - Luca Natile and Giuseppe Savaré,
*A Wasserstein approach to the one-dimensional sticky particle system*, SIAM J. Math. Anal.**41**(2009), no. 4, 1340–1365. MR**2540269**, DOI 10.1137/090750809 - John Riedl,
*Partially ordered locally convex vector spaces and extensions of positive continuous linear mappings*, Math. Ann.**157**(1964), 95–124. MR**169033**, DOI 10.1007/BF01362669 - Michael Westdickenberg,
*Projections onto the cone of optimal transport maps and compressible fluid flows*, J. Hyperbolic Differ. Equ.**7**(2010), no. 4, 605–649. MR**2746202**, DOI 10.1142/S0219891610002244 - Eduardo H. Zarantonello,
*Projections on convex sets in Hilbert space and spectral theory. I. Projections on convex sets*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 237–341. MR**0388177**

## Additional Information

**Fabio Cavalletti**- Affiliation: Lehrstuhl für Mathematik (Analysis), RWTH Aachen University, Templergraben 55, D-52062 Aachen, Germany
- MR Author ID: 956139
- Email: cavalletti@instmath.rwth-aachen.de
**Michael Westdickenberg**- Affiliation: Lehrstuhl für Mathematik (Analysis), RWTH Aachen University, Templergraben 55, D-52062 Aachen, Germany
- MR Author ID: 654309
- Email: mwest@instmath.rwth-aachen.de
- Received by editor(s): May 10, 2013
- Received by editor(s) in revised form: June 3, 2013
- Published electronically: October 15, 2014
- Communicated by: Walter Craig
- © Copyright 2014 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**143**(2015), 781-787 - MSC (2010): Primary 49Q20
- DOI: https://doi.org/10.1090/S0002-9939-2014-12332-X
- MathSciNet review: 3283664