## Sharp estimates of radial minimizers of $p$–Laplace equations

HTML articles powered by AMS MathViewer

- by Miguel Angel Navarro and Salvador Villegas PDF
- Proc. Amer. Math. Soc.
**145**(2017), 2931-2941 Request permission

## Abstract:

We study semi-stable, radially symmetric and decreasing solutions $u\in W^{1,p}(B_1)$ of $-\Delta _p u=g(u)$ in $B_1\setminus \{ 0\}$, where $B_1$ is the unit ball of $\mathbb {R}^N$, $p>1$, $\Delta _p$ is the $p-$Laplace operator and $g$ is a general locally Lipschitz function. We establish sharp pointwise estimates for such solutions, which do not depend on the nonlinearity $g$. By applying these results, sharp pointwise estimates are obtained for the extremal solution and its derivatives (up to order three) of the equation $-\Delta _p u=\lambda f(u)$, posed in $B_1$, with Dirichlet data $u|_{\partial B_1}=0$, where the nonlinearity $f$ is an increasing $C^1$ function with $f(0)>0$ and $\lim _{t\rightarrow +\infty }{\frac {f(t)}{t^{p-1}}}=+\infty .$## References

- Haim Brezis and Juan Luis Vázquez,
*Blow-up solutions of some nonlinear elliptic problems*, Rev. Mat. Univ. Complut. Madrid**10**(1997), no. 2, 443–469. MR**1605678** - Xavier Cabré,
*Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems*, Perspectives in nonlinear partial differential equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 159–174. MR**2373729**, DOI 10.1090/conm/446/08630 - Xavier Cabré, Antonio Capella, and Manel Sanchón,
*Regularity of radial minimizers of reaction equations involving the $p$-Laplacian*, Calc. Var. Partial Differential Equations**34**(2009), no. 4, 475–494. MR**2476421**, DOI 10.1007/s00526-008-0192-3 - Xavier Cabré and Manel Sanchón,
*Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian*, Commun. Pure Appl. Anal.**6**(2007), no. 1, 43–67. MR**2276329**, DOI 10.3934/cpaa.2007.6.43 - J. Dávila,
*Singular solutions of semi-linear elliptic problems*, Handbook of differential equations: stationary partial differential equations. Vol. VI, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 83–176. MR**2569324**, DOI 10.1016/S1874-5733(08)80019-8 - J. Dávila and L. Dupaigne,
*Perturbing singular solutions of the Gelfand problem*, Commun. Contemp. Math.**9**(2007), no. 5, 639–680. MR**2361735**, DOI 10.1142/S0219199707002575 - Juan Dávila, Louis Dupaigne, Ignacio Guerra, and Marcelo Montenegro,
*Stable solutions for the bilaplacian with exponential nonlinearity*, SIAM J. Math. Anal.**39**(2007), no. 2, 565–592. MR**2338421**, DOI 10.1137/060665579 - Juan Dávila, Louis Dupaigne, and Marcelo Montenegro,
*The extremal solution of a boundary reaction problem*, Commun. Pure Appl. Anal.**7**(2008), no. 4, 795–817. MR**2393398**, DOI 10.3934/cpaa.2008.7.795 - S. Eidelman and Y. Eidelman,
*On regularity of the extremal solution of the Dirichlet problem for some semilinear elliptic equations of the second order*, Houston J. Math.**31**(2005), no. 3, 957–960. MR**2143221** - Pierpaolo Esposito,
*Compactness of a nonlinear eigenvalue problem with a singular nonlinearity*, Commun. Contemp. Math.**10**(2008), no. 1, 17–45. MR**2387858**, DOI 10.1142/S0219199708002697 - J. García Azorero, I. Peral Alonso, and J.-P. Puel,
*Quasilinear problems with exponential growth in the reaction term*, Nonlinear Anal.**22**(1994), no. 4, 481–498. MR**1266373**, DOI 10.1016/0362-546X(94)90169-4 - Nassif Ghoussoub and Yujin Guo,
*On the partial differential equations of electrostatic MEMS devices: stationary case*, SIAM J. Math. Anal.**38**(2006/07), no. 5, 1423–1449. MR**2286013**, DOI 10.1137/050647803 - D. D. Joseph and T. S. Lundgren,
*Quasilinear Dirichlet problems driven by positive sources*, Arch. Rational Mech. Anal.**49**(1972/73), 241–269. MR**340701**, DOI 10.1007/BF00250508 - Gueorgui Nedev,
*Regularity of the extremal solution of semilinear elliptic equations*, C. R. Acad. Sci. Paris Sér. I Math.**330**(2000), no. 11, 997–1002 (English, with English and French summaries). MR**1779693**, DOI 10.1016/S0764-4442(00)00289-5 - Manel Sanchón,
*Boundedness of the extremal solution of some $p$-Laplacian problems*, Nonlinear Anal.**67**(2007), no. 1, 281–294. MR**2317200**, DOI 10.1016/j.na.2006.05.010 - Salvador Villegas,
*Sharp estimates for semi-stable radial solutions of semilinear elliptic equations*, J. Funct. Anal.**262**(2012), no. 7, 3394–3408. MR**2885956**, DOI 10.1016/j.jfa.2012.01.019 - Salvador Villegas,
*Boundedness of extremal solutions in dimension 4*, Adv. Math.**235**(2013), 126–133. MR**3010053**, DOI 10.1016/j.aim.2012.11.015

## Additional Information

**Miguel Angel Navarro**- Affiliation: Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain
- Email: mnavarro_2@ugr.es
**Salvador Villegas**- Affiliation: Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain
- MR Author ID: 365323
- Email: svillega@ugr.es
- Received by editor(s): August 4, 2016
- Published electronically: February 24, 2017
- Additional Notes: The authors have been supported by the MEC Spanish grant MTM2012-37960
- Communicated by: Joachim Krieger
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 2931-2941 - MSC (2010): Primary 35B25, 35J92
- DOI: https://doi.org/10.1090/proc/13454
- MathSciNet review: 3637942