Rhombic tilings and Bott–Samelson varieties
HTML articles powered by AMS MathViewer
- by Laura Escobar, Oliver Pechenik, Bridget Eileen Tenner and Alexander Yong
- Proc. Amer. Math. Soc. 146 (2018), 1921-1935
- DOI: https://doi.org/10.1090/proc/13869
- Published electronically: December 26, 2017
- PDF | Request permission
Abstract:
S. Elnitsky (1997) gave an elegant bijection between rhombic tilings of $2n$-gons and commutation classes of reduced words in the symmetric group on $n$ letters. P. Magyar (1998) found an important construction of the Bott–Samelson varieties introduced by H. C. Hansen (1973) and M. Demazure (1974). We explain a natural connection between S. Elnitsky’s and P. Magyar’s results. This suggests using tilings to encapsulate Bott–Samelson data (in type $A$). It also indicates a geometric perspective on S. Elnitsky’s bijection. We also extend this construction by assigning desingularizations of Schubert varieties to the zonotopal tilings considered by B. Tenner (2006).References
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- Sara C. Billey, William Jockusch, and Richard P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374. MR 1241505, DOI 10.1023/A:1022419800503
- Sara Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathematics, vol. 182, Birkhäuser Boston, Inc., Boston, MA, 2000. MR 1782635, DOI 10.1007/978-1-4612-1324-6
- R. Bott and H. Samelson, The cohomology ring of $G/T$, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 490–493. MR 71773, DOI 10.1073/pnas.41.7.490
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697, DOI 10.24033/asens.1261
- Balázs Elek. Bott-samelson varieties. Unpublished notes, available at https://www.math.cornell.edu/$\sim$bazse/BS_varieties.pdf, 2015.
- Serge Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups, J. Combin. Theory Ser. A 77 (1997), no. 2, 193–221. MR 1429077, DOI 10.1006/jcta.1997.2723
- Laura Escobar, Brick manifolds and toric varieties of brick polytopes, Electron. J. Combin. 23 (2016), no. 2, Paper 2.25, 18. MR 3512647, DOI 10.37236/5038
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- H. C. Hansen, On cycles in flag manifolds, Math. Scand. 33 (1973), 269–274 (1974). MR 376703, DOI 10.7146/math.scand.a-11489
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Brant Jones and Alexander Woo, Mask formulas for cograssmannian Kazhdan-Lusztig polynomials, Ann. Comb. 17 (2013), no. 1, 151–203. MR 3027577, DOI 10.1007/s00026-012-0172-3
- Peter Magyar, Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv. 73 (1998), no. 4, 603–636. MR 1639896, DOI 10.1007/s000140050071
- Toufik Mansour, The enumeration of permutations whose posets have a maximum element, Adv. in Appl. Math. 37 (2006), no. 4, 434–442. MR 2266892, DOI 10.1016/j.aam.2005.11.003
- Nicolas Perrin, Small resolutions of minuscule Schubert varieties, Compos. Math. 143 (2007), no. 5, 1255–1312. MR 2360316, DOI 10.1112/S0010437X07002734
- Bridget Eileen Tenner, Reduced decompositions and permutation patterns, J. Algebraic Combin. 24 (2006), no. 3, 263–284. MR 2260018, DOI 10.1007/s10801-006-0015-6
- Bridget Eileen Tenner, Reduced word manipulation: patterns and enumeration, J. Algebraic Combin. 46 (2017), no. 1, 189–217. MR 3666417, DOI 10.1007/s10801-017-0752-8
- Ravi Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–421. Appendix A written with A. Knutson. MR 2247964, DOI 10.4007/annals.2006.164.371
- Gérard Xavier Viennot, Heaps of pieces. I. Basic definitions and combinatorial lemmas, Graph theory and its applications: East and West (Jinan, 1986) Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 542–570. MR 1110852, DOI 10.1111/j.1749-6632.1989.tb16436.x
- Matthieu Willems, $K$-théorie équivariante des tours de Bott. Application à la structure multiplicative de la $K$-théorie équivariante des variétés de drapeaux, Duke Math. J. 132 (2006), no. 2, 271–309 (French, with English and French summaries). MR 2219259, DOI 10.1215/S0012-7094-06-13223-4
Bibliographic Information
- Laura Escobar
- Affiliation: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- MR Author ID: 990678
- ORCID: 0000-0002-7970-4152
- Email: lescobar@illinois.edu
- Oliver Pechenik
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- Address at time of publication: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 863417
- ORCID: 0000-0002-7090-2072
- Email: pechenik@umich.edu
- Bridget Eileen Tenner
- Affiliation: Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60614
- MR Author ID: 776323
- Email: bridget@math.depaul.edu
- Alexander Yong
- Affiliation: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- MR Author ID: 693975
- Email: ayong@uiuc.edu
- Received by editor(s): July 13, 2016
- Received by editor(s) in revised form: July 6, 2017
- Published electronically: December 26, 2017
- Additional Notes: The second author was supported by an NSF Graduate Research Fellowship.
The third author was partially supported by a Simons Foundation Collaboration Grant for Mathematicians.
The fourth author was supported by an NSF grant. - Communicated by: Patricia Hersh
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 1921-1935
- MSC (2010): Primary 05B45, 05E15, 14M15
- DOI: https://doi.org/10.1090/proc/13869
- MathSciNet review: 3767346