A limit formula for semigroups defined by Fourier-Jacobi series
HTML articles powered by AMS MathViewer
- by J. C. Guella and V. A. Menegatto
- Proc. Amer. Math. Soc. 146 (2018), 2027-2038
- DOI: https://doi.org/10.1090/proc/13889
- Published electronically: December 4, 2017
- PDF | Request permission
Abstract:
I. J. Schoenberg showed the following result in his celebrated paper [Schoenberg, I. J., Positive definite functions on spheres. Duke Math. J. 9 (1942), 96-108]: let $\cdot$ and $S^d$ denote the usual inner product and the unit sphere in $\mathbb {R}^{d+1}$, respectively. If $\mathcal {F}^d$ stands for the class of real continuous functions $f$ with domain $[-1,1]$ defining positive definite kernels $(x,y)\in S^d \times S^d \to f(x\cdot y)$, then the class $\bigcap _{d\geq 1} \mathcal {F}^d$ coincides with the class of probability generating functions on $[-1,1]$. In this paper, we present an extension of this result to classes of continuous functions defined by Fourier-Jacobi expansions with nonnegative coefficients. In particular, we establish a version of the above result in the case in which the spheres $S^d$ are replaced with compact two-point homogeneous spaces.References
- Richard Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR 0481145, DOI 10.1137/1.9781611970470
- V. S. Barbosa and V. A. Menegatto, Strict positive definiteness on products of compact two-point homogeneous spaces, Integral Transforms Spec. Funct. 28 (2017), no. 1, 56–73. MR 3574321, DOI 10.1080/10652469.2016.1249867
- V. S. Barbosa and V. A. Menegatto, Strictly positive definite kernels on compact two-point homogeneous spaces, Math. Inequal. Appl. 19 (2016), no. 2, 743–756. MR 3458777, DOI 10.7153/mia-19-54
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984. Theory of positive definite and related functions. MR 747302, DOI 10.1007/978-1-4612-1128-0
- N. H. Bingham, Positive definite functions on spheres, Proc. Cambridge Philos. Soc. 73 (1973), 145–156. MR 339308, DOI 10.1017/s0305004100047551
- Rafaela N. Bonfim and Valdir A. Menegatto, Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces, J. Multivariate Anal. 152 (2016), 237–248. MR 3554789, DOI 10.1016/j.jmva.2016.09.004
- Ward Cheney and Will Light, A course in approximation theory, Graduate Studies in Mathematics, vol. 101, American Mathematical Society, Providence, RI, 2009. Reprint of the 2000 original. MR 2474372, DOI 10.1090/gsm/101
- Ramesh Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121–226. MR 0215331
- George Gasper, Linearization of the product of Jacobi polynomials. I, Canadian J. Math. 22 (1970), 171–175. MR 257433, DOI 10.4153/CJM-1970-020-2
- George Gasper, Linearization of the product of Jacobi polynomials. II, Canadian J. Math. 22 (1970), 582–593. MR 264136, DOI 10.4153/CJM-1970-065-4
- Tilmann Gneiting, Strictly and non-strictly positive definite functions on spheres, Bernoulli 19 (2013), no. 4, 1327–1349. MR 3102554, DOI 10.3150/12-BEJSP06
- Egil A. Hylleraas, Linearization of products of Jacobi polynomials, Math. Scand. 10 (1962), 189–200. MR 145123, DOI 10.7146/math.scand.a-10527
- Valdir A. Menegatto, Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994), no. 1-2, 91–101. MR 1379646, DOI 10.1080/00036819408840292
- Oleg R. Musin, Positive definite functions in distance geometry, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2010, pp. 115–134. MR 2648323, DOI 10.4171/077-1/6
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. II, Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer Study Edition, Springer-Verlag, New York-Heidelberg, 1976. Theory of functions, zeros, polynomials, determinants, number theory, geometry. MR 0465631, DOI 10.1007/978-1-4757-6292-1
- I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. MR 5922, DOI 10.1215/S0012-7094-42-00908-6
- Victor L. Shapiro, Fourier series in several variables with applications to partial differential equations, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011. MR 2789293, DOI 10.1201/b10811
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- William F. Trench, Orthogonal polynomial expansions with nonnegative coefficients, SIAM J. Math. Anal. 7 (1976), no. 6, 824–833. MR 420121, DOI 10.1137/0507064
- Hsien-Chung Wang, Two-point homogeneous spaces, Ann. of Math. (2) 55 (1952), 177–191. MR 47345, DOI 10.2307/1969427
Bibliographic Information
- J. C. Guella
- Affiliation: Departamento de Matemática, ICMC-USP - São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
- MR Author ID: 1141900
- Email: jeanguella@gmail.com
- V. A. Menegatto
- Affiliation: Departamento de Matemática, ICMC-USP - São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
- MR Author ID: 358330
- ORCID: 0000-0002-4213-8759
- Email: menegatt@icmc.usp.br
- Received by editor(s): February 6, 2017
- Received by editor(s) in revised form: June 29, 2017
- Published electronically: December 4, 2017
- Additional Notes: The second author was supported in part by FAPESP, Grant 2016/09906-0
- Communicated by: Yuan Xu
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2027-2038
- MSC (2010): Primary 33C45, 42A16, 42A82, 42C10
- DOI: https://doi.org/10.1090/proc/13889
- MathSciNet review: 3767354