## A criterion to generate carpet Julia sets

HTML articles powered by AMS MathViewer

- by Fei Yang PDF
- Proc. Amer. Math. Soc.
**146**(2018), 2129-2141 Request permission

## Abstract:

It has been known that the Sierpiński carpets can appear as the Julia sets in the families of some rational maps. In this article we present a criterion that guarantees the existence of the carpet Julia sets in some rational maps having exactly one fixed (super-) attracting or parabolic basin. We show that this criterion can be applied to some well-known rational maps such as McMullen maps and Morosawa–Pilgrim family. Moreover, we give also some special examples whose Julia sets are Sierpiński carpets.## References

- Magnus Aspenberg and Michael Yampolsky,
*Mating non-renormalizable quadratic polynomials*, Comm. Math. Phys.**287**(2009), no. 1, 1–40. MR**2480740**, DOI 10.1007/s00220-008-0598-y - Mario Bonk, Mikhail Lyubich, and Sergei Merenkov,
*Quasisymmetries of Sierpiński carpet Julia sets*, Adv. Math.**301**(2016), 383–422. MR**3539379**, DOI 10.1016/j.aim.2016.06.007 - Robert L. Devaney, Núria Fagella, Antonio Garijo, and Xavier Jarque,
*Sierpiński curve Julia sets for quadratic rational maps*, Ann. Acad. Sci. Fenn. Math.**39**(2014), no. 1, 3–22. MR**3186803**, DOI 10.5186/aasfm.2014.3903 - Robert L. Devaney, Daniel M. Look, and David Uminsky,
*The escape trichotomy for singularly perturbed rational maps*, Indiana Univ. Math. J.**54**(2005), no. 6, 1621–1634. MR**2189680**, DOI 10.1512/iumj.2005.54.2615 - Robert L. Devaney and Kevin M. Pilgrim,
*Dynamic classification of escape time Sierpiński curve Julia sets*, Fund. Math.**202**(2009), no. 2, 181–198. MR**2506193**, DOI 10.4064/fm202-2-5 - Adrien Douady and John Hamal Hubbard,
*On the dynamics of polynomial-like mappings*, Ann. Sci. École Norm. Sup. (4)**18**(1985), no. 2, 287–343. MR**816367**, DOI 10.24033/asens.1491 - Jianxun Fu and Fei Yang,
*On the dynamics of a family of singularly perturbed rational maps*, J. Math. Anal. Appl.**424**(2015), no. 1, 104–121. MR**3286552**, DOI 10.1016/j.jmaa.2014.10.090 - Michael Kapovich and Bruce Kleiner,
*Hyperbolic groups with low-dimensional boundary*, Ann. Sci. École Norm. Sup. (4)**33**(2000), no. 5, 647–669 (English, with English and French summaries). MR**1834498**, DOI 10.1016/S0012-9593(00)01049-1 - John Milnor,
*Geometry and dynamics of quadratic rational maps*, Experiment. Math.**2**(1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR**1246482**, DOI 10.1080/10586458.1993.10504267 - John Milnor,
*Dynamics in one complex variable*, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR**2193309** - Kevin Michael Pilgrim,
*Cylinders for iterated rational maps*, ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–University of California, Berkeley. MR**2691488** - Kevin M. Pilgrim,
*Rational maps whose Fatou components are Jordan domains*, Ergodic Theory Dynam. Systems**16**(1996), no. 6, 1323–1343. MR**1424402**, DOI 10.1017/S0143385700010051 - Weiyuan Qiu, Fei Yang, and Yongcheng Yin,
*Quasisymmetric geometry of the Julia sets of McMullen maps*, arXiv: math.DS/1308.4324v2, 2016. - Weiyuan Qiu, Fei Yang, and Jinsong Zeng,
*Quasisymmetric geometry of the carpet Julia sets*, arXiv: math.DS/1403.2297v3, 2014. - Norbert Steinmetz,
*On the dynamics of the McMullen family $R(z)=z^m+\lambda /z^l$*, Conform. Geom. Dyn.**10**(2006), 159–183. MR**2261046**, DOI 10.1090/S1088-4173-06-00149-4 - Norbert Steinmetz,
*Sierpiński and non-Sierpiński curve Julia sets in families of rational maps*, J. Lond. Math. Soc. (2)**78**(2008), no. 2, 290–304. MR**2439626**, DOI 10.1112/jlms/jdn030 - Lei Tan and Yongcheng Yin,
*Local connectivity of the Julia set for geometrically finite rational maps*, Sci. China Ser. A**39**(1996), no. 1, 39–47. MR**1397233** - Gordon Thomas Whyburn,
*Analytic Topology*, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR**0007095**, DOI 10.1090/coll/028 - G. T. Whyburn,
*Topological characterization of the Sierpiński curve*, Fund. Math.**45**(1958), 320–324. MR**99638**, DOI 10.4064/fm-45-1-320-324 - Yingqing Xiao, Weiyuan Qiu, and Yongcheng Yin,
*On the dynamics of generalized McMullen maps*, Ergodic Theory Dynam. Systems**34**(2014), no. 6, 2093–2112. MR**3272785**, DOI 10.1017/etds.2013.21

## Additional Information

**Fei Yang**- Affiliation: Department of Mathematics, Nanjing University, Nanjing, 210093, People’s Republic of China
- MR Author ID: 983714
- Email: yangfei@nju.edu.cn
- Received by editor(s): January 11, 2017
- Received by editor(s) in revised form: May 4, 2017, and July 25, 2017
- Published electronically: December 18, 2017
- Additional Notes: This work is supported by the National Natural Science Foundation of China (grant Nos. 11401298 and 11671092) and the Fundamental Research Funds for the Central Universities (grant No. 0203-14380013).
- Communicated by: Nimish Shah
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 2129-2141 - MSC (2010): Primary 37F45; Secondary 37F10, 37F30
- DOI: https://doi.org/10.1090/proc/13924
- MathSciNet review: 3767363