Zeros of some special entire functions
HTML articles powered by AMS MathViewer
- by Árpád Baricz and Sanjeev Singh
- Proc. Amer. Math. Soc. 146 (2018), 2207-2216
- DOI: https://doi.org/10.1090/proc/13927
- Published electronically: January 12, 2018
- PDF | Request permission
Abstract:
The real and complex zeros of some special entire functions such as Wright, hyper-Bessel, and a special case of generalized hypergeometric functions are studied by using some classical results of Laguerre, Obreschkhoff, Pólya, and Runckel. The obtained results extend the known theorem of Hurwitz on the exact number of nonreal zeros of Bessel functions of the first kind. Moreover, results on zeros of derivatives of Bessel functions and the cross-product of Bessel functions are also given, which are related to some recent open problems.References
- Huda A. Al-Kharsani, Árpád Baricz, and Tibor K. Pogány, Starlikeness of a cross-product of Bessel functions, J. Math. Inequal. 10 (2016), no. 3, 819–827. MR 3565155, DOI 10.7153/jmi-10-66
- Árpád Baricz, Chrysi G. Kokologiannaki, and Tibor K. Pogány, Zeros of Bessel function derivatives, Proc. Amer. Math. Soc. 146 (2018), no. 1, 209–222. MR 3723134, DOI 10.1090/proc/13725
- Á. Baricz, R. Szász, N. Yağmur, Products of Bessel and modified Bessel functions, arXiv:1601.01998.
- H. Chaggara and N. Ben Romdhane, On the zeros of the hyper-Bessel function, Integral Transforms Spec. Funct. 26 (2015), no. 2, 96–101. MR 3275453, DOI 10.1080/10652469.2014.973191
- Thomas Craven and George Csordas, The Fox-Wright functions and Laguerre multiplier sequences, J. Math. Anal. Appl. 314 (2006), no. 1, 109–125. MR 2183541, DOI 10.1016/j.jmaa.2005.03.058
- George Csordas and Tamás Forgács, Multiplier sequences, classes of generalized Bessel functions and open problems, J. Math. Anal. Appl. 433 (2016), no. 2, 1369–1389. MR 3398769, DOI 10.1016/j.jmaa.2015.08.047
- Dimitar K. Dimitrov and Youssèf Ben Cheikh, Laguerre polynomials as Jensen polynomials of Laguerre-Pólya entire functions, J. Comput. Appl. Math. 233 (2009), no. 3, 703–707. MR 2583006, DOI 10.1016/j.cam.2009.02.039
- Dimitar K. Dimitrov and Peter K. Rusev, Zeros of entire Fourier transforms, East J. Approx. 17 (2011), no. 1, 1–110. MR 2882940
- Emil Hilb, Die komplexen Nullstellen der Besselschen Funktionen, Math. Z. 15 (1922), no. 1, 274–279 (German). MR 1544573, DOI 10.1007/BF01494399
- E. Hille and G. Szegö, On the complex zeros of the Bessel functions, Bull. Amer. Math. Soc. 49 (1943), 605–610. MR 8279, DOI 10.1090/S0002-9904-1943-07987-6
- A. Hurwitz, Ueber die Nullstellen der Bessel’schen Function, Math. Ann. 33 (1888), no. 2, 246–266 (German). MR 1510541, DOI 10.1007/BF01443855
- J. L. W. V. Jensen, Recherches sur la théorie des équations, Acta Math. 36 (1913), no. 1, 181–195 (French). MR 1555086, DOI 10.1007/BF02422380
- S. I. Kalmykov, D. B. Karp, Log-concavity and Turán-type inequalities for the generalized hypergeometric function, Anal. Math. (in press).
- Haseo Ki and Young-One Kim, On the number of nonreal zeros of real entire functions and the Fourier-Pólya conjecture, Duke Math. J. 104 (2000), no. 1, 45–73. MR 1769725, DOI 10.1215/S0012-7094-00-10413-9
- N. Obreschkoff, Über die Nullstellen der Besselschen Funktionen, Jber. Deutschen Math. Verein 38 (1929) 156–161.
- N. Obrechkoff, Zeros of Polynomials, Publ. Bulg. Acad. Sci., Sofia, 1963 (in Bulgarian); English translation (by I. Dimovski and P. Rusev) published by The Marin Drinov Acad. Publ. House, Sofia, 2003.
- Alexander Peyerimhoff, On the zeros of power series, Michigan Math. J. 13 (1966), 193–214. MR 190304
- G. Pólya, On the zeros of an integral function represented by Fourier’s integral, Messenger of Math. 52 (1923) 185–188.
- G. Pólya, Über einen Satz von Laguerre, Jber. Deutschen Math. Verein 38 (1929) 161–168.
- Donald St. P. Richards, Totally positive kernels, Pólya frequency functions, and generalized hypergeometric series, Linear Algebra Appl. 137/138 (1990), 467–478. MR 1067687, DOI 10.1016/0024-3795(90)90139-4
- Hans-J. Runckel, Zeros of entire functions, Trans. Amer. Math. Soc. 143 (1969), 343–362. MR 252641, DOI 10.1090/S0002-9947-1969-0252641-X
- E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition. MR 3155290
- G. N. Watson, The Zeros of Lommel’s Polynomials, Proc. London Math. Soc. (2) 19 (1920), no. 4, 266–272. MR 1576596, DOI 10.1112/plms/s2-19.1.266
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Bibliographic Information
- Árpád Baricz
- Affiliation: Department of Economics, Babeş-Bolyai University, Cluj-Napoca, Romania; Institute of Applied Mathematics, Óbuda University, Budapest, Hungary
- MR Author ID: 729952
- Email: bariczocsi@yahoo.com
- Sanjeev Singh
- Affiliation: Indian Statistical Institute, Chennai Centre, Chennai, India
- Address at time of publication: Discipline of Mathematics, Indian Institute of Technology Indore, Indore, India
- MR Author ID: 1147457
- Email: sanjeevsinghiitm@gmail.com
- Received by editor(s): February 14, 2017
- Received by editor(s) in revised form: July 31, 2017, and August 15, 2017
- Published electronically: January 12, 2018
- Additional Notes: The research of Á. Baricz was supported by the STAR-UBB Advanced Fellowship-Intern of the Babeş-Bolyai University of Cluj-Napoca.
- Communicated by: Yuan Xu
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2207-2216
- MSC (2010): Primary 30D15, 30A08, 33C10, 33C20
- DOI: https://doi.org/10.1090/proc/13927
- MathSciNet review: 3767370