Universality at an endpoint for orthogonal polynomials with Geronimus-type weights
HTML articles powered by AMS MathViewer
- by Brian Simanek PDF
- Proc. Amer. Math. Soc. 146 (2018), 3995-4007 Request permission
Abstract:
We provide a new closed form expression for the Geronimus polynomials on the unit circle and use it to obtain new results and formulas. Among our results is a universality result at an endpoint of an arc for polynomials orthogonal with respect to a Geronimus-type weight on an arc of the unit circle. The key tool is a formula of McLaughlin for the $n^{th}$ power of a $2\times 2$ matrix, which we use to derive convenient formulas for Geronimus polynomials.References
- Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960, DOI 10.1007/978-1-4612-0793-1
- P. Bourgade, On random matrices and $L$-functions, Ph.D. Thesis, New York University, available at http://www.cims.nyu.edu/$\sim$bourgade/papers/PhDThesis.pdf.
- María José Cantero and Arieh Iserles, From orthogonal polynomials on the unit circle to functional equations via generating functions, Trans. Amer. Math. Soc. 368 (2016), no. 6, 4027–4063. MR 3453364, DOI 10.1090/tran/6454
- M. S. Costa, R. L. Lamblém, J. H. McCabe, and A. Sri Ranga, Para-orthogonal polynomials from constant Verblunsky coefficients, J. Math. Anal. Appl. 426 (2015), no. 2, 1040–1060. MR 3314878, DOI 10.1016/j.jmaa.2015.02.005
- Tivadar Danka, Universality limits for generalized Jacobi measures, Adv. Math. 316 (2017), 613–666. MR 3672915, DOI 10.1016/j.aim.2017.06.026
- T. Danka and V. Totik, Christoffel functions with power type weights, to appear in Journal of the European Mathematical Society.
- Jeroen Demeyer, Recursively enumerable sets of polynomials over a finite field, J. Algebra 310 (2007), no. 2, 801–828. MR 2308181, DOI 10.1016/j.jalgebra.2006.09.030
- Leonid Golinskii, Akhiezer’s orthogonal polynomials and Bernstein-Szegő method for a circular arc, J. Approx. Theory 95 (1998), no. 2, 229–263. MR 1652884, DOI 10.1006/jath.1998.3197
- Leonid Golinskii, Paul Nevai, Ferenc Pintér, and Walter Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle. II, J. Approx. Theory 96 (1999), no. 1, 1–32. MR 1659428, DOI 10.1006/jath.1998.3208
- Leonid Golinskii, Paul Nevai, and Walter Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle, J. Approx. Theory 83 (1995), no. 3, 392–422. MR 1361537, DOI 10.1006/jath.1995.1128
- M. Bello Hernández and E. Miña Díaz, Strong asymptotic behavior and weak convergence of polynomials orthogonal on an arc of the unit circle, J. Approx. Theory 111 (2001), no. 2, 233–255. MR 1849548, DOI 10.1006/jath.2001.3574
- Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786, DOI 10.1017/CBO9781107325982
- William B. Jones, Olav Njåstad, and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), no. 2, 113–152. MR 976057, DOI 10.1112/blms/21.2.113
- B. G. Korenev, Bessel functions and their applications, Analytical Methods and Special Functions, vol. 8, Taylor & Francis Group, London, 2002. Translated from the Russian by E. V. Pankratiev. MR 1963816
- A. B. J. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations from the modified Jacobi unitary ensemble, Int. Math. Res. Not. 30 (2002), 1575–1600. MR 1912278, DOI 10.1155/S1073792802203116
- D. S. Lubinsky, Universality limits at the hard edge of the spectrum for measures with compact support, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 099, 39. MR 2439541, DOI 10.1093/imrp/rnn099
- D. S. Lubinsky, A new approach to universality limits at the edge of the spectrum, Integrable systems and random matrices, Contemp. Math., vol. 458, Amer. Math. Soc., Providence, RI, 2008, pp. 281–290. MR 2411912, DOI 10.1090/conm/458/08941
- Doron S. Lubinsky and Vy Nguyen, Universality limits involving orthogonal polynomials on an arc of the unit circle, Comput. Methods Funct. Theory 13 (2013), no. 1, 91–106. MR 3089946, DOI 10.1007/s40315-013-0011-5
- Attila Máté, Paul Nevai, and Vilmos Totik, Szegő’s extremum problem on the unit circle, Ann. of Math. (2) 134 (1991), no. 2, 433–453. MR 1127481, DOI 10.2307/2944352
- J. Mc Laughlin, Combinatorial identities deriving from the $n$th power of a $2\times 2$ matrix, Integers 4 (2004), A19, 15. MR 2116004
- Lynsey Naugle, Orthogonal Polynomials on an Arc of the Unit Circle with Respect to a Generalized Jacobi Weight: A Riemann-Hilbert Method Approach, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–The University of Mississippi. MR 3698864
- Ferenc Janos Pinter, Perturbation of orthogonal polynomials on an arc of the unit circle, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–The Ohio State University. MR 2692359
- F. Pintér and P. Nevai, Schur functions and orthogonal polynomials on the unit circle, Approximation theory and function series (Budapest, 1995) Bolyai Soc. Math. Stud., vol. 5, János Bolyai Math. Soc., Budapest, 1996, pp. 293–306. MR 1432676
- Brian Simanek, Two universality results for polynomial reproducing kernels, J. Approx. Theory 216 (2017), 16–37. MR 3612482, DOI 10.1016/j.jat.2017.01.002
- Barry Simon, Ratio asymptotics and weak asymptotic measures for orthogonal polynomials on the real line, J. Approx. Theory 126 (2004), no. 2, 198–217. MR 2045539, DOI 10.1016/j.jat.2003.12.002
- Barry Simon, Orthogonal polynomials on the unit circle. Part 2, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR 2105089, DOI 10.1090/coll/054.2/01
- Barry Simon, Orthogonal polynomials on the unit circle. Part 2, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR 2105089, DOI 10.1090/coll/054.2/01
- Barry Simon, The Christoffel-Darboux kernel, Perspectives in partial differential equations, harmonic analysis and applications, Proc. Sympos. Pure Math., vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 295–335. MR 2500498, DOI 10.1090/pspum/079/2500498
- Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
Additional Information
- Brian Simanek
- Affiliation: Department of Mathematics, Baylor University, One Bear Place 97328, Waco, Texas 76798
- MR Author ID: 959574
- Received by editor(s): August 18, 2017
- Received by editor(s) in revised form: December 18, 2017
- Published electronically: April 26, 2018
- Communicated by: Mourad Ismail
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3995-4007
- MSC (2010): Primary 42C05; Secondary 33C45
- DOI: https://doi.org/10.1090/proc/14085
- MathSciNet review: 3825852