Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Moiré pattern on symmetric spaces of the noncompact type


Author: Alexandre Afgoustidis
Journal: Proc. Amer. Math. Soc. 146 (2018), 3747-3758
MSC (2010): Primary 43A85, 53C35; Secondary 43A90, 22E46
DOI: https://doi.org/10.1090/proc/14125
Published electronically: May 15, 2018
MathSciNet review: 3825830
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ X$ is a symmetric space of the noncompact type, just as adding Helgason waves which propagate in all directions will yield an elementary spherical function for $ X$, a Helgason wave can be produced by adding elementary spherical functions whose centers describe a horocycle in $ X$.


References [Enhancements On Off] (What's this?)

  • [1] Isaac Amidror, The theory of the Moiré phenomenon, Computational Imaging and Vision, vol. 15, Kluwer Academic Publishers, Dordrecht, 2000. MR 1751208
  • [2] J-Ph. Anker, The spherical Fourier transform of rapidly decreasing functions, J. Funct. Anal. 96-2, pp. 331-349.
  • [3] Masaaki Eguchi, Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. Functional Analysis 34 (1979), no. 2, 167–216. MR 552702, https://doi.org/10.1016/0022-1236(79)90031-4
  • [4] Masaaki Eguchi and Kiyosato Okamoto, The Fourier transform of the Schwartz space on a symmetric space, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 7, 237–241. MR 499949
  • [5] Harish-Chandra, Spherical functions on a semisimple Lie group, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 408–409. MR 87043, https://doi.org/10.1073/pnas.43.5.408
  • [6] Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, https://doi.org/10.2307/2372786
  • [7] J. Harthong, Le moiré, Publications de l'IRMA, Strasbourg ; vol. 93.
  • [8] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • [9] Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
  • [10] Sigurdur Helgason, Geometric analysis on symmetric spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 2008. MR 2463854
  • [11] D. Hubel, Eye, Brain and Vision, Scientific American Library.
  • [12] D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, Journal of Physiology 160-1 ; pp. 106-154.
  • [13] D. Hubel, Transformation of information in the cat's visual system, Proceedings of the International Union of Physiological Sciences, XXII International Congress, Leiden.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 43A85, 53C35, 43A90, 22E46

Retrieve articles in all journals with MSC (2010): 43A85, 53C35, 43A90, 22E46


Additional Information

Alexandre Afgoustidis
Affiliation: CEREMADE, Université Paris-Dauphine, PSL, Place du Maréchal de Lattre de Tas- signy, 75775 Paris Cedex 16, France
Email: afgoustidis@ceremade.dauphine.fr

DOI: https://doi.org/10.1090/proc/14125
Keywords: Spherical functions, Riemannian symmetric spaces, Fourier-Helgason transform, neuroscience.
Received by editor(s): July 16, 2016
Published electronically: May 15, 2018
Additional Notes: The research in this paper was conducted while the author was a Ph.D. student at Université Paris 7 and IMJ-PRG (Institut de Mathématiques de Jussieu-Paris Rive Gauche).
Communicated by: Mourad E.H. Ismail
Article copyright: © Copyright 2018 American Mathematical Society