Norm estimates of weighted composition operators pertaining to the Hilbert matrix
HTML articles powered by AMS MathViewer
- by Mikael Lindström, Santeri Miihkinen and Niklas Wikman
- Proc. Amer. Math. Soc. 147 (2019), 2425-2435
- DOI: https://doi.org/10.1090/proc/14437
- Published electronically: March 1, 2019
- PDF | Request permission
Abstract:
Very recently, Božin and Karapetrović [J. Funct. Anal. 274 (2018), no. 2, pp. 525–543] solved a conjecture by proving that the norm of the Hilbert matrix operator $\mathcal {H}$ on the Bergman space $A^p$ is equal to $\frac {\pi }{\sin (\frac {2\pi }{p})}$ for $2 < p < 4.$ In this article we present a partly new and simplified proof of this result. Moreover, we calculate the exact value of the norm of $\mathcal {H}$ defined on the Korenblum spaces $H^\infty _\alpha$ for $0 < \alpha \le 2/3$ and an upper bound for the norm on the scale $2/3 < \alpha < 1$.References
- Milton Abramowitz (ed.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1965. Superintendent of Documents. MR 0177136
- Alexandru Aleman, Alfonso Montes-Rodríguez, and Andreea Sarafoleanu, The eigenfunctions of the Hilbert matrix, Constr. Approx. 36 (2012), no. 3, 353–374. MR 2996436, DOI 10.1007/s00365-012-9157-z
- B. Bhayo and J. Sándor, On the inequalities for beta function, Notes on Number Theory and Discrete Mathematics, Vol. 21 (2015), No. 2, pp. 1–7.
- Vladimir Božin and Boban Karapetrović, Norm of the Hilbert matrix on Bergman spaces, J. Funct. Anal. 274 (2018), no. 2, 525–543. MR 3724148, DOI 10.1016/j.jfa.2017.08.005
- M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41–60. MR 1767392
- E. Diamantopoulos and Aristomenis G. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), no. 2, 191–198. MR 1784632, DOI 10.4064/sm-140-2-191-198
- E. Diamantopoulos, Hilbert matrix on Bergman spaces, Illinois J. Math. 48 (2004), no. 3, 1067–1078. MR 2114270
- Milutin Dostanić, Miroljub Jevtić, and Dragan Vukotić, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal. 254 (2008), no. 11, 2800–2815. MR 2414221, DOI 10.1016/j.jfa.2008.02.009
- Wilhelm Magnus, On the spectrum of Hilbert’s matrix, Amer. J. Math. 72 (1950), 699–704. MR 41358, DOI 10.2307/2372284
- Victor V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-Verlag, Berlin, 2010. Translated from the 2001 Russian second edition by Dimitry Leites; Paperback edition [of MR2082772]. MR 2683151
Bibliographic Information
- Mikael Lindström
- Affiliation: Department of Mathematics, Åbo Akademi University, FI-20500 Åbo, Finland
- Email: mikael.lindstrom@abo.fi
- Santeri Miihkinen
- Affiliation: Department of Mathematics, Åbo Akademi University, FI-20500 Åbo, Finland
- MR Author ID: 945304
- Email: santeri.miihkinen@abo.fi
- Niklas Wikman
- Affiliation: Department of Mathematics, Åbo Akademi University, FI-20500 Åbo, Finland
- Email: niklas.wikman@abo.fi
- Received by editor(s): May 20, 2018
- Published electronically: March 1, 2019
- Communicated by: Stephan Ramon Garcia
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2425-2435
- MSC (2010): Primary 47B38; Secondary 30H20
- DOI: https://doi.org/10.1090/proc/14437
- MathSciNet review: 3951422